当前位置: 首页 精选范文 电磁辐射安全范文

电磁辐射安全精选(五篇)

发布时间:2023-10-11 17:26:33

序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇电磁辐射安全,期待它们能激发您的灵感。

电磁辐射安全

篇1

【关键词】电磁辐射 通讯基站 辐射安全

随着现代科学技术,人们使用电器的种类和时间越来越多,人们似乎一个各种电磁辐射的环境包围着。电磁辐射对人体危害,各种媒体资源已经频频的报道出来了。电磁辐射是人眼看不见,触碰不到的一种能力形式,他可以散发到地球的任意一个角落。随着人们生活质量高,对于自身健康程度越来越越关心,人们逐渐对于电磁辐射的危害有了更加深层次的认识。通信基站使用是手机能够正常运行的一个必要的基础设施,同时也成为公众和媒体关注的焦点,所以本文将释放一定程度上的通信基站的电磁辐射强度的分析,澄清一些误解,使得社会群众能够正确了解电磁辐射知识提供一点帮助。

1 信源站(室内分布)

选取使用GSM900MHz网络天线的信源站为参考标准,其天线口功率一般控制在为在5~10dBm范围内,即使电梯内的功率较大的天线口也控制在10~15dBm范围内,其增益均为3dBi。按照天线出口处最大功率15dBm,天线增益3dBi计算,天线出口处的等效辐射功率为64mW。远小于《电磁环境控制限值》(GB8702-2014)中3.1.2中的100W的等效辐射功率限值,对于3~300000MHZ的频率范围,向没有屏蔽空间的等效辐射功率小于100W的辐射体,属豁免管理(豁免可以通俗的理解为对关键人群组产生的辐射剂量不会超过国家标准限值,可以忽略其危险性)。

2 通讯基站

通信基站发射的辐射的功率的大小,取决于基站天线增益,天线主发射方向和天线的向下倾角的大小,其特点是在如下:反比于电磁辐射(功率密度)的距离平方和基站天线主轴。

一般情况下电磁辐射在发出一段时间之后会表现出逐渐衰减的趋势,所以在水平面上,在主轴最大的电磁辐射强度试来自天线的,沿长轴方向,来自天线的距离越远,电磁辐射的强度受会受到其他影响变弱。通过大量的现场监测表明,在近距离基站单位范围之内,比如在天线下方,所测量的数据一般较小,甚至无法得到有效的勘测数据。电磁这种情况下,点可以被接收的辐射主要是多径反射波,绕射波;从测量值的距离的增加之后,电磁辐射的强度逐渐随着距离的增加而降低。现场监测屋顶支架(在塔的顶端),在其值的电磁辐射的水平方向将电磁辐射曲线。用电磁辐射值的会逐渐增加距,然后再逐渐随着距离的增加减小;由于屋顶框架和屋顶天线塔架设高度较低,因此相对于地面塔,顶板支架的信号覆盖更为狭窄。

现场监测1-4层天井窗户处时,按照楼层分别布点监测。由表1可知:数值最大为4楼的0.822μW/cm2,最小值为1楼的0.281μW/cm2。所有监测点位功率密度均符合《电磁环境控制限值》(GB8702-2014)和《辐射环境保护管理导则电磁辐射环境影响评价方法与标准》(HJ/T10.3―1996)规定的“单个基站公众照射导出限值功率密度8μW/cm2”的要求。

3 结语

从上面的数据表明,在正常操的单个通讯基站作条件副符合国家标准,不超过标准极限。公众不会暴露在严重的辐射内。而且在人口稠密的城市地区通过设置多个基站,基站服务半径缩小,减少了方法的发射机功率,既保证通话质量,并且可以进一步降低电磁辐射,电磁辐射水平被控制在最小的范围之内。以确保市民健康利益不受损害。

参考文献:

篇2

【关键词】通信基站;GSM;CDMA;电磁辐射;防护距离

1.引言

近年来,移动通信技术得到了一定的发展,越来越多的移动通信基站将架设在人口密集的城市上空。移动通信作为一种迅速、准确地传递各种信息的有效工具,使各行各业节省了人力、物力,缩短了时间、空间,大大提高了工作效率,成为一个迅速崛起的行业跻身于世界经济发展的前列。但是随着人们对通信手段和方式的更高要求,随之而来的电磁辐射问题也凸现出来。如果不能科学确定通信基站电磁辐射安全防护距离,将会对公众和环境造成影响。目前,这是摆在广大通信事业工作者面前的一项长期而艰巨的任务。

2.通信基站电磁特性分析

2.1 通信基站的基本特点

目前,GSM网和CDMA网都是通过基站天线接收和发射信号实现信息的传递。基站接收天线接收来自环境的上行频段的电磁波信号,发射天线向环境发射下行频段的电磁波信号。因此基站对周围环境的影响主要是下行频段范围内的电磁波辐射所产生的。

基站每个扇区的载频数目、发射功率/载频、从发射机端口到天线发射间的衰减、主瓣增益等参数决定了电磁能量发射的大小;天线辐射的方向图、天线的俯角等参数决定了电磁能量的分布。这些参数都由实际情况确定,每个基站都不一定完全相同。

2.2 天线辐射的方向图

在天线所有相关参数中,天线辐射的方向图是比较特殊的一个参数,它表示天线向一定方向辐射电磁波的能力。通常用水平平面及垂直平面上表示不同方向辐射电磁波功率大小的曲线来表示天线的方向性,图1和图2分别为水平和垂直方向性示意图。

3.基站防护区域和防护距离

基站的扇区一般都是三个,每个扇区的方向基本一致,都是按照0/120°/240°布置。同一个基站每个扇区的天线基本一致,并且多网共站址架设基站的同一个扇区天线之间的距

离也较小,有些架设在楼顶的天线甚至紧挨在一起,因此下面将着重讨论一个扇区的情况,并将多网共站址架设基站的某一个扇区作为一个整体对待。

3.1 目前基站防护区域

目前基站的防护区域是根据主瓣方向来划分的,近似于一个以天线为中心,主瓣方向水平防护距离为半径、垂直防护距离为高的一个圆锥体,平面示意图如图3所示。

3.2 新的防护区域和防护距离的划分

由于天线发射的电磁能量主要集中在主瓣方向,其他方向的电磁能量衰减很快,因此可以将天线的电磁辐射防护区域进一步细化分为天线主瓣、侧向和后方三个区域,具体定义如下。

(1)防护区域

主瓣防护区域:天线水平半功率角之间的区域;侧向防护区域:从天线水平半功率角到天线正面水平线之间的区域;后方防护区域:天线背面区域。

(2)防护距离

主瓣防护区域水平方向防护距离也为主瓣方向防护距离,垂直方向防护距离也为主瓣方向防护距离;侧向防护区域水平方向防护距离为侧向防护距离,垂直方向防护距离保守取为主瓣方向防护距离;后方防护区域水平方向防护距离为后方防护距离,垂直方向防护距离也为后方防护距离;三个区域交接之处,防护距离取较小的。

(3)参数的取值

由于各网天线参数不完全一致,因此水平半功率张角、垂直半功率张角和俯角的取值以天线参数中最大者计算。其他参数按照实际情况取值。

这样划分既符合实际情况,又便于实际操作,如图4所示。

3.3 防护距离的确定

根据HJ/T 10.2-1996《辐射环境保护管理导则--电磁辐射监测仪器和方法》 中微波远场轴向功率密度预测模型计算基站电磁辐射强度。

式中 Pd 为功率密度, ; P 为设备辐射功率,W; G 为天线最大辐射方向的功率增益( 倍数); d 为距离天线的直线距离,m。

设备实际最大输出功率( Pout) 经分配单元、接头、跳线、馈线和天线平衡转换器后产生衰减( x 为衰减系数) , 最后经天线向环境辐射的功率P 计算式为

天线增益的单位转换公式为

由式( 1) 可以推算出功率密度与天线主射线方向距离的关系, 即

当计算基站的轴向保护距离( 即功率密度达到评价标时的水平距离) 时, 取

水平保护距离( 天线俯角较小, 保守计算) 为

垂直保护距离为

式中为发射天线安装俯角; 为发射天线垂直半功率角。本文选取的典型WCDMA 网络基站参数见表1。

由于天线俯角较小, 保守考虑水平防护距离约等于理论计算的轴向防护距离。根据上述安全防护距离计算模式, 本文测试WCDMA 网络基站的水平防护距离为25. 1 m, 垂直防护距离为4.0 m。

4.结束语

综上所述,根据天线电磁发射特性提出的天线主瓣、侧向和后方三个防护区域的划分模式及相应防护距离的计算方法与实际情况能较好的吻合。既能符合电磁污染实际情况,又能起到防护人员的作用和缩小防护区域。

参考文献:

篇3

关键词:电磁辐射,存在问题,对策

中图分类号:O441 文献标识码:A

1 城市电磁辐射污染源

随着我国城市化的快速发展,着科学技术的进步,无线电技术已经被广泛应用于国防、工农业生产、交通运输、通讯、信息产业等各个领域并深入到千家万户,它给人类创造了巨大的物质文明,但同时也把人们带进了一个充满人造电磁辐射的环境里。电磁辐射主要分为天然产生和人为产生,过量的天然电磁辐射和人为电磁辐射均会造成电磁辐射污染。一般而言,城市电磁辐射污染主要指人为电磁辐射污染,按照电磁波频率的大小,人为电磁辐射源又可分为工频辐射源和射频辐射源,其中射频辐射源释放的电磁波的频率较高且频谱范围较宽,其电磁辐射的影响范围也较大。各类电磁波发射系统、工频辐射系统、利用电磁能的工业、科学、医疗设备等甚至包括部分家用电器,均是城市电磁辐射的污染源或潜在污染源(见表1) 。

由表1可知,城市电磁辐射污染源(含潜在污染源)的种类多、分布广,存在于人们生活的方方面面,其中广播电视、雷达、卫星通信及移动通信对区域电磁辐射水平贡献较大,各种电子设备、室内线缆布设是居室电磁辐射污染的主要来源。

2 城市目前电磁辐射存在的一些问题分析

2.1 我国相关法规、标准还需要继续完善

1997年我国颁布的《电磁辐射环境保护管理办法》是我国仅有的针对电磁辐射污染防治的立法,属部门规章。随着城市空域电磁辐射环境的日趋复杂,该管理办法已不能完全满足目前辐射环境监管的需要,主要表现为法规的内容相对滞后、效力级别低、难以有效执行。虽然广播、电信、电力等部门在《广播电视设施保护条例》、《中华人民共和国电信条例》、《无线电管理条例》、《城市电力规划规范》等法规和规范中对电磁辐射污染防治作出了相应规定,但《电磁辐射环境保护管理办法》中的部分制度在这些法规中没有得到充分反映,在实际执法过程中常常出现电磁辐射污染纠纷的各方当事人各执一词、各执一法的现象。因此,有必要尽快制定与实施更高级别的电磁辐射污染防治法。

在电磁辐射防护标准方面存在以下问题:第一,上世纪80年代末原国家环境保护总局的《电磁辐射防护规定》(GB8702-88)和卫生部的《环境电磁波卫生标准》(GB9175-88)是我国电磁辐射防护领域的2个基本标准,但它们对环境电磁波容许辐射强度标准的规定存在不一致。管理标准的不一致直接导致在实际执行过程中,有关行政执法部门和监测部门采用的标准不一。而且,这2个标准的法律效力相同,发生冲突时需呈请国务院裁决其适用性。第二,关于高压送变电设施的工频电磁场强度限值尚无国家标准,相关部门推荐暂分别以4kV/m和0.1mT作为居民区工频电场标准和磁感应强度标准,这直接导致输变电设施电磁场评价标准的针对性不强,即对于不同电压等级的输变电工程均适用相同的标准限值。因此为做好电磁辐射环境影响评价工作和管理工作,应统一各标准中的管理限值,并加快设立尚未制定国家标准的电磁辐射设施的辐射水平限值。

2.2 城市空域电磁辐射能量密度不断增大

电磁辐射技术的广泛应用已造成城市空域电磁能明显上升。根据资料调查显示,某地区环境电磁辐射污染1991-2006年进行调查,该地区平均辐射强度增长17.5倍,年均增长率达12.1%。此外,根据有关资料调查显示,某市部分居住社区的电磁辐射监测结果虽符合《环境电磁波卫生标准》的1级标准(小于5V/m),但100KHz~3GHz频率段的电场强度已接近容许场强值的上限,部分社区的复合功率密度出现个别值超标现象。

2.3 电磁辐射纠纷日益增多

近年来,公众的辐射防护意识逐渐提高,对居住环境的电磁辐射暴露水平也更加重视,电磁辐射污染纠纷随之逐年增多。引发电磁辐射污染纠纷的主要原因有:在社区建设移动通信基站、10kV变电站等电磁辐射设施;在社区附近建设高压输变电设施、电气化轨道交通设施;房地产开发商隐瞒商品房周围电磁辐射污染现状,以及电磁辐射污染致人身伤害等。

2.4 电磁辐射设施环境敏感性日渐增强

城市和广播电视通信技术的发展使电磁辐射设施与公众的距离得以缩短,电磁辐射设施的环境敏感性随之日渐增强,主要表现为:城市扩张使一些广播电视和无线电通信发射台逐渐被新建城区包围,造成局部居民生活区场强较高;城市用电需求的增加及电网改造工程的实施使大量高压输变电设施进入城市市区,而且电压等级不断升高,其产生的工频电磁场可能对公众健康产生不利影响,此外其产生的噪声可能干扰广播和无线电通信;通信技术的发展使居民区被通信基站包围,虽然单个基站的功率较小,但是大量的通信基站会使城市空域电磁场不断增强,另外,高层建筑顶部建有的微波定向天线、卫星天线等,易造成对高层建筑的电磁污染;城市交通的迅猛发展使交通干线的电磁噪声不断加重,在车流量高峰时段的交通路口,电磁噪声值可达44~50dBμV/m。

3 对策与建议

在利用电磁技术推进城市建设、创建便捷生活的同时,应以电磁辐射防护管理办法与防护标准为依据,加强电磁辐射环境管理,优化电磁辐射设施布设,采取有效防护措施,以降低或避免电磁辐射对公众健康和环境安全的不利影响。

3.1 不断完善电磁辐射污染防治法规、标准

现行的《电磁辐射环境保护管理办法》已不能适应当前电磁辐射监管的需要,而且其与广电、通信等领域制定的相关法规无法全面兼容,因而适时制定与电磁辐射污染防治相关的专项法规势在必行。该法规须在综合考虑电磁辐射污染源及其辐射特性的基础上,以风险预防为原则,以保护环境与公众健康为出发点,建立健全城市电磁辐射环境容量控制制度、电磁辐射设施规划制度、辐射设施环境影响评价制度、辐射环境监管与监测制度、辐射环境风险预防制度、辐射危害事件处理与报告制度、公众参与制度等。

此外,为规范电磁辐射设施的辐射水平、提高电磁辐射环境监管能力,并为解决电磁纠纷提供标准数据支持,应加快出台统一的电磁辐射防护国家标准。该标准应根据电磁辐射的危害性,并借鉴国外标准限值,在总结电磁辐射设施的辐射水平及我国城市电磁辐射环境质量现状及发展趋势的基础上,统一《电磁辐射防护规定》与《环境电磁波卫生标准》中关于电磁场强度及功率密度的导出限值。同时,还应出台相关电磁辐射安全管理导则,明确主要辐射设施的建造使用规范、管理要求、环境影响评价范围等内容。

3.2 加强电磁辐射环境管理

为保护环境安全和公众健康,促进各类电磁辐射设施的规范、有序发展,需切实加强对电磁辐射环境的管理。首先要严格执行国家相关法律法规及技术标准规范,落实电磁辐射设施环境影响评价制度、审批制度、“三同时”制度、监测制度、公众参与制度等。其次要明确城市空域电磁波发展规划,并将其纳入城市建设总体规划,合理布局电磁发射设备,防止造成城市空域局部电磁污染。实施区域电磁辐射环境容量控制措施,对可能造成周边辐射环境污染的中短波发射台实施异地搬迁,对微波天线等辐射源周围的建筑物高度予以限制,控制室内微蜂窝基站天线的悬挂高度及影响半径,如高度不宜低于2.3m,影响半径约为1m,室外宏站与周边敏感建筑的水平距离应保持30m等,高压线两侧50m内不宜建设学校、住宅及医院等环境敏感建筑。

3.3 采用电磁辐射控制技术

可以通过采取电磁辐射控制技术来防治电磁辐射污染。第一,通过产品设计、工程设计等方式有效减少电磁辐射,如在输电线路设计中采取提高输电导线对地高度、进行双回路导线逆相布置、高低压导线分层架设等方式,变电站的进出线在穿越居民区和人口密集地段时采用地下电缆布设方式。第二,通过优化设计减少基站数量并降低天线增益,如根据通信基站的发射功率、天线高度和方向图、基站覆盖区的边界场强等条件对通信基站覆盖区进行优化设计,在达到最佳地域覆盖和最佳通话质量的同时,尽量降低天线增益,减少电磁辐射污染。第三,通过屏蔽辐射源降低电磁泄漏,可采取被动屏蔽、主动屏蔽方式对辐射源进行屏蔽,还可采用高频接地方式将屏蔽体内产生的射频电流导入大地,有效避免屏蔽体成为二次辐射源。第四,增加环境保护目标与电磁辐射源间的距离及绿化。研究表明,树木具有吸收电磁能的作用,在电磁波的传播路径上进行植被绿化,可增加电磁波在传播过程中的衰减。第五,采用滤波技术抑制电磁干扰,通过滤波线路将有用信号提取出来,同时阻截干扰信号通过。第六,开发利用防电磁辐射材料。利用防电磁辐射材料对电磁波的吸收或反射等特性,在建筑、交通、包装、服装等领域使用防辐射材料可有效衰减电磁辐射强度,如使用碳素系列和金属系列等增强水泥基复合材料、防电磁波玻璃、吸收电磁波的涂料等用于建造房屋便可有效阻挡室外电磁波进入室内。

3.4 普及电磁辐射知识

城市空域及居室内广泛存在的电磁辐射因其无色、无味、无嗅的特性容易被公众忽略其存在的同时,也极易引起公众的恐慌,进而导致发生电磁辐射纠纷事件。相关部门应积极开展电磁辐射知识宣传工作,增强公众的辐射防护意识,使其了解过量电磁辐射的可能危害,正确理解生活中人为电磁辐射的来源及其实践的正当性、安全性,掌握如何降低居室电磁辐射的方法或防护方法。此外,相关部门在监管工作中要切实落实公众参与制度,并充分发挥其监督作用,与广大公众及电磁辐射设施建造运营单位共创安全的城市电磁辐射环境。

参考文献

篇4

【关键词】电磁辐射;动力灾害;监测;强度;采矿工程

1.引 言

煤岩动力灾害包括煤与瓦斯突出、冲击矿压等。是受到采掘影响失去平衡的煤岩体,以其突然、急剧、猛烈的破坏特征对煤矿的安全轻则构成严重威胁,重则造成巨大的经济损失和人员伤亡的现象。是一种典型的不可逆能量耗散过程。煤岩动力灾害的发生往往导致煤矿巷道毁坏、设备损毁、人员伤亡等事故,有时还会导致瓦斯爆炸等后续灾害,给煤矿安全生产造成了严重威胁。对煤矿动力灾害的监测对于预测煤矿动力灾害以及避免或减小灾害损失有着重要的意义。

电磁辐射监测法主要是针对煤岩动力灾害发生前,煤岩体中电磁辐射的异常来判断危险程度,对煤矿动力灾害进行预测,给煤矿危险解危提供依据。电磁辐射法是利用煤岩体自身的电磁辐射效应进行监测,是一种非接触式的无损监测,在煤矿动力灾害中有着较好的应用前景。

2.电磁辐射监测原理

电磁辐射现象是煤岩体在载荷作用下对应力的一种电磁辐射响应,是一种能量的释放。煤岩体在应力作用下,煤岩体内部介质会发生变形,煤岩介质颗粒之间会发生相对运动,在相互的摩擦以及变形过程中煤岩体的应变能会促使煤岩体中的电子跃迁从而产生电磁辐射现象。电磁辐射的强弱(mv)以及次数(频次)的大小反应了煤岩体内部变形、滑移的强度,而煤岩体的变形、滑移强度正好是煤岩所受应力大小以及变化的一种反应,从而电磁辐射的强弱间接的反应了煤岩体应力及其变化的大小。煤岩体所发生的动力灾害是煤岩体对其所受应力的一种响应,煤岩体所受应力越高变化越快煤岩体动力灾害危险程度越高,因此,电磁辐射的强弱也同时反应了煤岩体动力灾害的危险程度,可以利用煤岩体的电磁辐射现象对煤矿动力灾害进行监测。

3.电磁辐射监测设备简介

目前国内煤矿所使用的用于电磁辐射监测的设备主要为KBD5、KBD7,其中以便携式的KBD5居多。KBD5硬件设备包括电磁辐射接收天线、信号处理接收的监测主机组成。接收主机监测到的电磁辐射数据在地面传输到装有电磁辐射数据处理的电脑内从而进行电磁辐射数据的分析处理,判断矿井相应区域的危险状态。KBD7与KBD5的不同之处在于KBD7实现了电磁辐射监测的实时监测和在线传输。

4.某矿电磁辐射监测实例

某矿2501采区为该矿的首采采区,平均煤厚超过30m,为特厚煤层开采,250102工作面为综放开采,采高3m,放顶9m,采放比1:3。在该采区首采工作面250101面开采过程中呈多次发生冲击矿压灾害,给该矿的安全开采造成了巨大威胁。在该采区的第二个工作面250102面开采过程中实施了有针对性的电磁辐射监测。

电磁辐射监测方法:使用电磁辐射监测系统预测回采工作面或巷道动力灾害危险时,首先要将天线开口朝向需要进行预测的煤岩体区域。一般在回采工作面或巷道中每隔10米左右布置一个测点,每个测点测试两分钟,布置完毕后,测试开始,数据自动处理保存。当有某一测点电磁辐射较强时,可在周围加密测点,测点间距为5m。如图1所示。

工作面监测方案

①监测方式:定点监测和普查相结合。采用KBD5矿用本安型电磁辐射仪对防治区域进行检测。每天对运输顺槽两帮和回风顺槽实体煤帮固定测点进行观测。

②监测时间:每隔两天中班监测一次。

③测点布置:采用KBD5矿用本安型电磁辐射仪对防治区域进行检测,每个点采集数据时间为120秒。监测范围为两顺槽自工作面起往外200m。其测点布置:(1)运输顺槽:自工作面煤壁向外每隔10米在两帮(内帮和外帮)各布置一个测点,检测煤帮,共计40个测点。(2)回风顺槽:自工作面煤壁向外每隔10米在内帮布置一个测点,共计20个测点。

工作面监测结果分析

从压力显现比较明显的运顺顺槽内外帮超前工作面200m范围内的不同位置处电磁辐射分布情况来看,工作面超前应力区运输顺槽和煤壁侧和煤柱侧电磁辐射有明显的不同。主要表现在:煤壁侧电磁辐射强度值较大,有明显的电磁辐射峰值且峰值与正常值相差很大,一般峰值强度为正常值的10倍以上,煤柱侧电磁辐射值较小,峰值区不明显,峰值强度一般为正常值的5到8倍。说明煤柱区应力大小小于煤壁侧应力大小。

煤壁电磁辐射一般有明显的峰值集中区,主要有四种型式:

(1)峰型应力集中区

该类型的应力集中出现的时候比较少,应力集中区区域比较大,峰值区域达到80m到100m甚至更大,为受超前支撑压力所致。

(2)双峰型应力集中区

该类型的应力集中区在运输顺槽煤壁侧出现的时候比较多,是运输顺槽煤壁侧应力分布的主要表现形式。峰值区域比单峰值类型明显减小,一般20m到50m;两个峰值强度相差不大,离工作面较近的一个峰值强度较小;两峰值区域间间距10m到30m;峰值强度与正常值的比值与单峰型相比明显减小,一般为3到8倍。说明此种情况煤岩体应力总体较小。

(3)多尖峰波动型应力集中区

该类型的应力集中区多出现在运输顺槽煤壁侧。峰值区域三个及其以上;峰值区域一般较小20m到50m;峰值强度与正常值比值一般3到5,个别较大可能为电器设备影响所致。峰值区域间间距很小。多峰值区域的出现除电器设备影响外,有可能是上覆岩层运动导致,当工作面运输顺槽煤壁侧电磁辐射出现多峰值区域时,往往在之后较短时间内出现强矿压现象。此时应该加强该区域的冲击矿压监测工作。

(4)无峰型应力集中区

无峰型电磁辐射特点是在运输顺槽煤壁侧出现没有电磁辐射峰值区域的时候。这种情况往往发生在强矿压发生后一段时间,或者工作面处于应力较低,安全状况较好的时期。此时,工作面前方电磁辐射值均处在一个较低值。

动力灾害发生的前兆电磁辐射特征

2008年2月27日早班8时05分,250102运输顺槽转载机段来一爆声。注氮管道被震落,二根支护钢梁震段落下,顶板下沉1.5m,多根单体柱弹飞,转载机被压死。冲击矿压发生前后电磁辐射情况如表7、8所示。

由图7、图8可以看出,冲击矿压发生强电磁辐射强度达到450mv是正常情况下的8倍左右,且电磁辐射出现三个峰值区域。而冲击矿压发生后,电磁辐射值则急剧下降,达到120mv以下,峰值区域减少为一个。

电磁辐射强度大小以及峰值区域的多少反应了煤矿动力灾害危险程度。

5.结 论

篇5

在该项实验中,实验人员以“高斯计”为测试设备,先测量了环境的电磁辐射值,为0.3毫高斯。随后,又测量了某款手机的电磁辐射值。结果显示,在待机状态下,手机的电磁辐射值是2.3毫高斯,而接通后增加到3.4毫高斯。另外,实验人员在距离手机5厘米、10厘米、15厘米处分别测量了手机的电磁辐射值,结果分别为1、0.5和0.3毫高斯,如果减去环境电磁辐射值,可以粗略估计,在距离手机15厘米以上时,其电磁辐射值基本为0。由此可见,手机在待机和接通两种不同情况下辐射值不一样,并且距离手机越远,电磁辐射值越小。

上述两个现象,在风扇、吹风机上同样成立。虽然紧贴风扇处电磁辐射值较大,达到412毫高斯,但在正常使用距离下,电磁辐射值已经骤降为0.26毫高斯。同理,紧贴着电吹风电机位置,电磁辐射值为633毫高斯,在出风口处其电磁辐射值仅为10毫高斯。

家电辐射确实存在一定安全距离吗?常年从事电磁辐射研究的中国泰尔实验室研究人员买望告诉《生命时报》记者,在她看来,央视实验具有一定科学性,测量数据可供百姓参考,但严谨性和准确性还不够,因为测量家用电器的电磁辐射值时,不同位置、角度、环境测得结果都不一样,需要具体情况具体分析,不能一概而论。北京大学环境保护办公室主任张志强补充说,高斯计测量的是家电周围的磁场,虽然磁场大小和电磁辐射值存在一定关系,但两者不能等同,最好用专业的电磁辐射检测设备。