发布时间:2023-10-11 17:26:16
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇无线通信技术演进,期待它们能激发您的灵感。
无线通信迈向宽带移动
支持移动能力的WiMAX技术,为通信领域的发展带来了新的机遇,同时也给移动通信领域带来了竞争和挑战。在向宽带无线移动发展的过程中,移动通信技术的发展方向是在保持对高速移动性支持的同时提供更高的数据业务能力,无线接入技术在进一步提高数据业务能力的同时也逐步增强对移动性的支持,因此原来两种不同定位,处于不同领域的技术开始出现交叠和竞争。
在这种背景下,移动通信业界提出了新的市场需求,要求进一步改进和增强3G技术,提供更强的业务能力和更好的用户体验。因此,3GPP和3GPP2相应启动了演进型3G技术研究工作,以保持3G技术的竞争力和在移动通信领域的领导地位。3GPP2已经于2007年4月颁布了cdma2000的演进型技术标准的第一版本UMB空中接口技术标准,目前2.0版本也基本完成。3GPP内TD-SCDMA和WCDMA的演进型技术LTE标准也将于2007年底完成。
无论是WiMAX、LTE还是UMB,核心技术都是基于OFDM和MIMO。WiMAX最初提供固定宽带无线接入,随着北电、摩托罗拉和三星等移动通信企业的加盟,WiMAX技术在固定宽带无线接入基础上进一步增强,支持中低速移动用户,峰值速率达到70Mbps。LTE标准在设计多址方案时,3GPP内大部分成员认为上行链路OFDM技术峰均比过高会影响终端的功放成本和电池寿命,因此LTE下行采用OFDMA,上行采用较低峰均比的单载波FDMA。而3GPP2的主要成员认为上行链路OFDM技术峰均比问题可以通过预编码等方式解决,UMB标准上下行链路均采用OFDMA,同时在反向链路保留了CDMA数据信道,用于传输突发的低速率,对时延敏感的反向数据。LTE和UMB除了支持高速移动用户之外,峰值速率高达280Mbps。
作为TD、WCDMA和cdma2000技术演进的LTE和UMB技术具有通信领域的产业背景,拥有全球统一的频率资源,广大的2G、3G商用网络和雄厚的产业基础。WiMAX技术既有英特尔这样在计算机芯片制造领域的霸主,又得到众多移动通信设备制造商和运营商的支持,在标准化进程和产品研发进程方面占有先机。同时WiMAX也在积极争取成为IMT-2000家族的一员,如果WiMAX成为第六个IMT-2000技术,将解决WiMAX面临的缺乏统一的频率资源的难题,为WiMAX的未来应用打开广阔空间。
IMT-Advanced技术征集在即
随着WRC-07的临近,IMT-Advanced标准化工作启动在即,针对ITU即将开始征集的IMT-Advanced技术,IEEE802.16工作组启动了802.16m项目,3GPP和3GPP2也将进一步增强LTE和UMB技术。世界各国的企业和研究机构也在积极准备IMT-Advanced候选技术提案。
WiMAX、LTE和UMB技术性能相对3G技术大幅提高,已经可以满足B3G系统高速移动场景的需求,在系统载波带宽扩展到100MHz时,应该可以满足游牧和固定场景需求。目前业界普遍认为WiMAX和LTE、UMB将沿着无线宽带接入和宽带移动通信两条路线向IMT-Advanced演进。同时还会有新的提案向ITU提交,可以预见IMT-Advanced标准的竞争将更加激烈。
竞争与融合
【关键词】 5G线通信 场景需求 技术演进 网络架
目前来说,虽然4G网络的部署正在进行中,但一些移动运营商已经开始推广5G。与4G无线网络相比,5G具有一系列的优点,如在5G网络下,手机上网速度得到大大的提升,比4G快五十倍。同时,5G网络可以支持不同场景的应用,尤其是支持各种物联网和智能家居产品。下面结合笔者的工作总结,就5G无线通信场景需求与技术演进进行论述。
一、5G通信场景服务需求
从通信历史来分析,用户的需求升级是通信系统进行换代的最根本动力,因此如何把握用户的需求,合理地预测未来的通信场景是进行技术升级的必要前提。在国家级研发团队中,每一个组织都成立了专门的需求小组,专门针对本国家本地区用户行为、需求进行跟踪归纳,为今后的技术升级打下坚实的基础。
中国的IMT-2020 5G需求组就是在当前中国通信环境下,结合中国的通信特点,对中国未来通信场景做出合理规划、预测。总结起来就是“三高”:高转换、高密度以及高速度。
高转换意味着通信场景前后差异很大,可能上一秒还是单独一人的洗手间,下一秒已经是人满为患的大商场。未来的通信必然要适应这种不同的通信场景之间的来回切换。
高密度不但意味着在单位小区面积里要服务更多的用户,同时意味着移动设备在特定的时间地点上接触到的信息源密度将远远大于4G通信场景。为了满足能够在单位小区面积服务更多的用户,最直接的想法就是小基站的广泛部署,扩展更大的容量,支持更多的用户。这种小基站式的布局关键问题是如何消除基站间的同频干扰。高密度的另一个含义则更具挑战性,根据NGMN欧洲5G通信需求组的构想,未来手机不仅仅接收来自基站本身的信号,甚至要接收处理来自用户自身和周边携带传感器设备的信号,比如可穿戴仪器和汽车信号等等。在这种构想下,手机的应用范围将会大大拓宽,不仅仅成为一个收集数据的接口,也是连接传输云端数据的纽带,同时还是最终处理结果的表达中心,这将大大强化终端在未来移动通信的定位。因此如何在高速移动状态下保持信号稳定,提高抗干扰能力是5G移动通信必须要考虑解决的问题。
二、5G技术演进路线
5G技术演进路线如图一所示,LTE-A由3GPP R10版本最终确定,有很多新的性能需求被写入标准,其载波聚合技术和Massive-MIMO技术是当今无线通信的热门技术。载波聚合技术的出发点主要是将多个离散的载波结合起来从而提高带宽,这样可以有效地利用离散的频谱以及适应异构网络通信。一个主小区(PCell)和最多4个辅小区(SCell)一同服务同一个UE,其中PCell通常指的是UE在建立初始连接时选择的小区,而其余的服务小区被统称为SCell。所有的小区有相同的帧结构和上下行配置。载波聚合的参数配置和性能要求可参见R10的TR36.913。
Massive-MIMO主要是提高天线信号输出的增强技术,目前重点研究的是8×8天线下行256QAM的实现,同时MU-MIMO和COMP技术也是该课题重要的研究方向。
5G通信技术另一个重要课题就是通信网络架构的重组,云接入网C-RAN通过引入云计算的方法、工具和平台,彻底颠覆了原有移动接入网的结构。在传统的分布式基站网络中,相邻的基站通过X2口进行传输,其时延和backhaul容量一直制约LTE系统传输性能。而在C-RAN的架构下,基站之间的通信近似于理想的backhaul,同时又可以进行资源共享,通过负载均衡来克服困扰业界已久的潮汐效应。
另外,5G技术研究是对于原有硬件实现的功能进行逻辑抽象和再次划分。网络功能虚拟化NFV主要是对于现有传输模块的逻辑功能进行重新划分整合,使得很多逻辑功能不再依赖于专有的硬件来处理。这项技术最早由欧洲电信标准化组织ETSI提出,并在核心网得到了广泛的应用。现在的发展趋势是在接入网中也考虑引入NFV技术,因此如何对接入网功能模型进行抽象和划分软硬件功能是下一阶段的主要课题。
5G新型无线传输信号增强技术发展方向可以分为以下4个方向:增加信号的有效功率、提高信号传输抗干扰技术、推荐频段的通信模型建立以及高效率的上下行收发模式。
增加有效信号的发射功率的代表技术是LTE-A中提到的Massive-MIMO和CoMP技术。前者是通过增加天线的数量来提高发射信号功率,后者利用联合信号来提高小区边缘吞吐量。
新型调制解调技术是抗干扰技术一个重点方向,作为3GPP R13的研究项目,非正交多址接入技术NOMA被视为下一代数字调制技术的有力候选。其思想核心是将同一段视频资源分配给不同的用户,采用非正交传送方式来提高吞吐量,其代价是需要精密的串扰消除技术和复杂的接收机结构。
5G的频段大多在毫米波传输上,如何在毫米波进行无线通信,建立毫米波传输信道模型,是重要的研究课题。建立高效率的收发传输模式同样也是也是提高频段利用率的重要一个课题,灵活配置上下行传输的全双工Full-Duplex方案在相关的会议上也已经立项研究。这些新的通信技术的涌现和发展是推动5G前进的最根本力量。
三、结论
综上所述,本文从5G通信需求、演进路线、发展方向对于未来5G场景进行了探讨。相信未来的通信将向着高密度、高速度方向演进。通信需求的提升必然会导致无线网络的结构演进和通信新技术的涌现。此外,本文就通信网络结构演进、逻辑功能抽象划分、新通信频段的传输模型建立、新型传输信号增强四个技术演进方向进行了重点介绍。这是目前通信网络需求和技术的联动,有利于推进了5G通信的持续发展。
参 考 文 献
【关键词】数据通信;红外无线通信;近距离通信
中图分类号:TN92 文献标识码:A 文章编号:1674-098X(2015)05(a)-0000-00
我国电子技术与互联网技术不断发展的过程中,红外无线通信技术也得到了快速的发展,在多个领域中均有应用。红外光谱涉及的区域较宽,所以不会受到无线管理协会的约束,而且红外线并不会穿越不透明物体,安全性也有较大提升,以红外载波作为基础的无线通信技术,在国际会议与各大企业中均有应用,其安全性明显高于其他常用的无线通信技术。传统射频线路存在较大的接受幅度波动现象,而使用红外载波技术则不会出现这种问题,非常适用于各种场合。
1红外无线通信原理
红外无线通信设备包括发射设备、信号通道、接收设备,发射设备包括编码器与发射器,接收器设备包括探测器与解码器。红外无线通信系统以双向通道作为基础通信方式,而红外无线通信系统可以结合发射器与探测器,组成红外收发器,而编码器与解码器则可以组成红外控制器。红外无线通信设备主要通过收发器、控制器、信号通道共同组成,信号以控制器进行编码,之后由收发器发射已经完成编码的信息,由另一部设备的收发器接收信息,并且通过控制器完成解码转化,最终进行信号的输出。
2室内红外传输性能对比
目前常用的红外传输方式可以根据收发器角度进行区分,分别为定向与非定向两种连接方式,也可以根据传输方式将其分为直射与非直射两种连接方式。定向连接方式是稳定性最佳的系统传输方式,可以降低路径损耗,但是这种传输方式需要保证发射设备与接收设备处于固定位置,在移动性多媒体设备中并不适用。非定向连接活动性强,适用于多种活动中的信号传输,适用于多媒体设备开发工作。通过混合两种连接方法的模式,既可以满足设备的稳定性,还可以满足收发器的信号发送视角要求。直射连接可以有效提高系统功率效应,降低系统多路传输时出现的失真现象。非直射连接的耐用性较强,可以实现绕过障碍的载波传输功能。定向直射连接的功率主要集中在狭窄的红外光束之中,可以使系统功率得到有效提升,使接收器在视角较低的情况下接受数据。但是使用定向直射连接方法,存在一定的多路失真现象,而且发射设备与接收设备不能存在障碍,该连接方式固定位置,并且进行设备校准。混合非直射方法则解决了定向直射连接的问题,但是该方法仍然存在多路失真现象,在传输区域增加的同时,多路失真问题也会更加严重。漫反射连接使用非定向的非直射连接方式,也是红外通信研究中最为常用的连接结构,该方式无需校准发射设备与接受设备,并不需要直射完成连接,而是通过地面、墙面漫反射现象,将红外载波发送到任何区域。该方法的实用性要超过其他连接方法,而且耐用性较高,但是该方法多路失真现象较为严重,而且路径损耗要超出直射方式。
3应用限制
3.1红外发射强度
如果红外线频率过高,就会导致人类眼睛与皮肤受到损伤,所以在设置红外无线通信时,需要严格控制红外发射强度,在着位速率上升的情况下,为了满足信号传递的距离,就会需要加强红外发射光强。为了保证红外发射效果不会影响人类身体健康,在选择红外发射强度时,必须满足IEC836-2发射限制,目前我国红外数据协会规定,红外设备发射强度应维持在450mW/sr以下。
3.2红外通信环境
红外无线通信技术需要一定的环境要求,在正常的环境中,太阳、白炽灯、荧光灯都会影响红外数据的传输。太阳光的影响区域较大,在510nm-1200nm均有一定影响,荧光灯影响波长为610nm,白炽灯影响带宽较大,在1100nm时影响最大。因为环境的限制,决定了无线通信系统应用范围受到一定限制。
4红外无线设备局域网架构
进行红外无线设备局域网架构时,需要使用PC、红外收发器、红外控制器相互连接,个人便携设备与终端设备通过红外收发站进行信号的传输,一般局域网应使用一台主机与三台分机共同组成。主机与分机可以快速进行数据的传输,而PC机数据可以直接在外置存储器进行储存,通过红外收发器与控制器进行红外信号的检测与产生,并且可以生成满足通信要求的红外线信号,通过控制器完成数字信号的编码与解码。红外发射设备包括发射器与编码器,红外接收设备则使用探测器与解码器组成,在控制器完成信息的编码后,红外控制器将数据通过收发器发送,在其它设备检测到信号后,通过解码器完成数据解码,并且通过设备完成数字信号输出。便携设备可以与收发站实现无线通信,使数据传输的速度得到有效提升,而且大多数设备均安装了红外接口,所以近距离红外通信功能完全可以在小型移动设备中使用。
5结语
在红外无线通信技术不断发展的过程中,近距离红外无线通信技术也得到了广泛的应用,尤其是无线局域网的应用,已经在许多行业得到应用。通过红外无线通信技术,可以实现室内无线网络,在进行机械测量时,仍然可以使用红外无线数据进行数据传输。在红外无线技术不断发展的新时期,将逐渐向小体积、高位速、大距离的方向发展,而近距离红外无线通信技术,也将在更多行业得到应用。
【参考文献】
[1] 徐飞.蓝牙数据传输增强技术研究及其基带芯片设计实现[D].西安电子科技大学,2013(04):1-49.
[2] 李端松.海浪发电模拟装置的动静态特性及无线数据采集系统的研究[D].山东大学,2013(05):1-67.
1无线通信技术研究热点及应用
基于无线通信技术具有成本低、灵活性高、易用性强、扩展性好、设备维护便捷等诸多优点,现如今无线通信技术飞速发展,技术不断的升级更新。在发展的同时,研究的热点也相对更集中,主要有超宽带通信技术、rfid(射频识别)、nfc(近场通信)、lte(long-term evolution,长期演进)和4g等;
1.1超宽带通信技术
超宽带脉冲无线电,能够有效地解决无线频谱资源紧张的问题。因为它具有极低的发射功率,能够与其他的无线通信系统共存。超宽带具有这些技术特性在近距离高速和远距离低速无线通信中都得到充分的应用,例如:无线usb,高速wlan, ir-uwb与其他一些无线通信技术相比,主要具有以下特点:(1)支持高数据速率或系统容量的能力。(2)高精度定位和出色的探测与成像能力。(3)共享频谱资源。(4)穿透能力强。(5)保密性和抗干扰性能非常好。(6)低成本、低功耗。。
1.2 rfid技术
rfid即射频识别技术,是20世纪90年代开始兴起并逐渐走向成熟的一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无须人工干预,可工作于各种恶劣环境。rfid技术可识别高速运动物体并可同时识别多个标签,操作快捷方便。射频识别技术的应用领域十分广泛,包括钞票及产品防伪技术,身份证、通行证识别,电子收费系统(香港的八达通),病人识别及电子病历,门禁系统等等,并且在这些领域都取得了可观的经济效益。就目前而言,rfid在中国大陆、香港、台湾的发展还远落后于美国及欧洲。
1.3 nfc技术
nfc又称近距离无线通信,是一种短距离的高频无线通信技术,允许电子设备之间进行非接触式点对点数据传输,在十厘米(3.9英寸)内交换数据。这个技术由免接触式射频识别(rfid)演变而来,由飞利浦、诺基亚和索尼共同研制开发,其基础是rfid及互连技术。近场通信是一种短距高频的无线电技术,在13.56mhz频率运行于20厘米距离内。
现如今nfc通信技术已日趋成熟,大部分移动电话都内置了nfc,并且推出了相关功能应用。对于移动终端或行动性消费电子产品,nfc的使用比较方便。例如在卡模式下,可代替大量的ic卡,门禁卡等。
1.4 lte
lte是第3代合作伙伴(3gpp)主导的通用移动通信系统(umts)技术标准的长期演进,于2004年12月3gpp多伦多tsg ran#26会议上正式立项并启动。lte项目并非人们普遍误解的4g技术,而是由3g向4g技术之间的过渡,俗称3.9g,它改进并增强了3g的空中接入技术,采用ofdm和mimo作为其无线网络演进的唯一标准,这种以ofdm/fdma为核心的技术可以被看作“准4g”技术。在20mhz频谱带宽下能够提供下行100mbit/s与上行50mbit/s的峰值速率。改善了小区边缘用户的性能,提高小区容量和降低系统延迟。
1.5 4g
尽管3g可以提供无线多媒体服务,但是它的数据率仍然有限。4g是指第四代移动通信技术,也是指3g之后的延伸。4g是集3g与wlan于一体,并能够传输高质量视频图像,它的图像传输质量与高清晰度电视不相上下。4g系统能够以100mbps的速度下载,比目前的拨号上网快2000倍,上传的速度也能达到20mbps,并能够满足几乎所有用户对于无线服务的要求。
现有的4g标准主要有lte advanced(长期演进技术升级版)和wimax-advanced(全球互通微波存取升级版)。lte advanced是lte的增强,完全向后兼容lte,通常是只需要在lte上通过软件升级更新即可,升级过程和从wcdma升级到hspa相类似。峰值速率:下行1gbps,上行500mbps。wimax-advanced(全球互通微波存取升级版),由美国intel所主导,接收下行与上行最高速率可达到300mbps,在静止定点接收可高达1gbps。
2无线通信技术的发展趋势
无线通信技术的发展一方面体现出通信技术本身的更新和演进,另一方面也是受需求的驱动得到发展。综合技术层面和使用需求等因素来考虑,无线通信网络发展趋势将表现在如下几个方面:
(1)无线网络泛在化。网络的泛在化可以使得任何人都可以随时随地的通过终端设备进行网络接入,获取个性化的服务信息,相应的网络将主动的融入人们的生活,通过信息交互来提供更加优质的服务。
(2)宽带无线接入。无线接入有着传统接入无法比拟的优越性,对于高速数据传输速度的需求,也使得像uwb,5g的wifi等成为无线接入的重要技术。
(3)网络融合性增强。未来的网络必将呈现多元化,重新构建一个新的网络,花费巨大,且存在技术风险。因此,把多种网络通过融合的方式实现互联互通,成为一大发展趋势。
【关键词】 3G 无线通信技术 关键点
近些年来,中国移动通信技术每年都在飞快地发展。现如今已经跻身于世界发达国家水平之列。第三代移动通信技术的发展给人类的生活带来了翻天覆地的变化。下面本研究主要对3G无线通信技术的一些关键技术进行分析。
一、3G无线通信技术及其特点分析
3G技术与从现有的移动语音网络技术相比,主要的优点在于频道的高效、实用、传输速率快、质量高以及大容量等。目前国际电联在IMT-2000无线接口标准中对3G的相关标准做出了明确的说明,无线接入技术平台主要分为了DSWCD-MA/UMTA、TD-SCDMA以及多载波CDMA20001x/3x等,这些连接平台本身并无法兼容,因此在建设3G网络时需要选择其中的一种技术平台。但是在操作中无论选取哪一种技术平台,其核心网络CN均是可以共用的核心网络,均是采用基于IP的业务形式。目前移动通讯技术设备缺乏保护机制,软件设计容易遭受到攻击,由于无线通信方便、经济,因此大量用户会采用无线网络传输文件,导致无线信道容易遭受到攻击,这些都是3G无线通信技术需要改进的地方。
二、3G无线通信技术的关键部分
目前3G技术所具备的大多的功能都是在第二代无线技术上实现的,改变的基数主要包括以电话为主的系统增加传送数据的能力,其次是结合因特网和移动通讯网,GPRS技术是迎合通信市场而发展起来的,从无线部分传输数据到有限部分,使用更短的接入时间向终端用户提供更多的资源。从技术角度进行研究,当前3G通信系统由核心网络、无线接入网络以及终端设备组成,再考虑到运营商的投资回报问题,又可以分为以下几部分。第一3G电路核心网络,其主要的功能是完成各种语言、音频等多种媒体业务的处理和转换,同时实现连接运营商的业务网络等,第二3G网络的分组传送网络,其功能是实现系统的高效率、低成本以及管理的底层传送,第三支撑平台,是决定运营商3G市场份额的主要因素,主要的作用是应用现有资源、扩展新应用以及应用范围等。
无线分组网关设备主要功能是采用相同的硬件平台向终端用户提供移动数据服务,实现GGSN功能,同时具备了行业验证、丰富软件功能、GGSN遵循以及3GPP2的标准功能等,在设计中充分使用路由能力,提供了与数据通信领域同质量的、同可靠性的功能。无线接入网络的分组传输网络功能可以分为BSC之间、BSCs与汇聚节点之间的网络传输,针对不同的UMTS提供具有兼容性的网络阶段以及分组网络传送方案,针对RAN系统部分的设计,充分考虑到演进路径的变化,由于传输的可靠性以及经济性的要求,在设计中还需要综合考虑到网络级的高可用性和设备的可靠性要求,还需要采用响应额基数来提高带宽有效性。
无论是3G核心网络还是2G核心网络,其定义必须是全分布式的多媒体网络体系结构,无论是终端信息交流,还是图像和数据的传输处理均是采用统一化的技术平台。3G核心网络建设时针对不同无线网络技术以及发展阶段,提出可提供网络组件的全演进的IP网络构架,网络组件通常包括媒体网关MGW、呼叫控制部分、无线分无网关设备以及信令网管SGW等,在设计时将具备标签交换MPLS以及虚拟专网VPN等功能,便于语音、数据以及信件等的业务的交换与处理。3G系统规范的方向均是IPv6,因此在建设初期就需要充分考虑到IPv6的支持以及演进的实现,不仅需要将双线UE连接到IPv4Pv6的网络上,还需要将UE连接到IPv4的节点上。信令网络是实现相互通讯簿的支撑网络,主要功能是实现网络组件之间的传递,随着终端用户的逐渐增加,TCAP应用也是逐渐加大,信令转接点充分利用了IP的高灵活性在SS70IP网络下,基于IEIF的SIGTRAN行业准则和ITP思想,不仅仅支持新一代的信令网络,还同时支持了混合信令网络,保证业务发展与网络演进紧密的连接在一起。
三、结束语
综上所述,本文主要分析了3G无线通信技术的关键部分,目前关于3G通信系统标准,国际上主要流行美国的CDMA2000、欧洲WCDMA以及我国的TD-SCDMA,在互联网的浏览方面具有很强的优势,但那时仍然需要在安全防护技术方面做出更多额努力,保证移动终端的隐私权利不被侵犯。
参考文献