当前位置: 首页 精选范文 人工智能教育的培训机构范文

人工智能教育的培训机构精选(五篇)

发布时间:2023-10-11 15:54:35

序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇人工智能教育的培训机构,期待它们能激发您的灵感。

人工智能教育的培训机构

篇1

在大数据的“滋养”下,AI在越来越多的领域更懂人,让拥有深度学习能力、不断进化的AI帮助人类探索学习规律、开拓认知潜能,已成为人不被机器淘汰的必要之举,根据教育部的规定,2018年秋季开学后,高中生们将要开设一门新课程:《人工智能》。

互联网教育尤其是线上K12培优项目一直是投资热门,直播1对1模式风口过后,教育圈内最火的应该是AI项目了。据亿欧智库的报告显示,2017年人工智能教育融资额度达42.17亿元,其中超80%属于早期投资项目,这个赛道有望诞生多个独角兽公司。

笔者发现,当前布局人工智能的在线教育大体分为三派:

教学或题库测评类工具产品,比如作业盒子等;

培训机构应用AI技术,比如好未来等;

人工智能教育引擎及平台提供商,比如高木学习等。

现在摆在AI教育创投从业者面前的问题是:到底以技术实力论英雄的AI教育的泡沫有多大?真金不怕火炼的AI教育项目的核心能力在哪里?如何才能落地? 本文试做解读。

一、为什么“自适应”其实并非真正的AI?一位投资人朋友曾向我这样说道:“既懂互联网行业又完全懂本行业的业务的管理型人才不超过十个,这是在‘互联网+’双创浪潮中每个垂直行业头部项目就几家能玩转的原因。”而认知和技术门槛更高的“AI+”情况恐怕会更加不妙,甚至很多人把“自适应”与“AI教育”划等号。

自适应学习(Adaptive Learning)的鼻祖是美国的Knewton公司,它通过评估不同学生对知识材料掌握度进行个性化推荐,有点类似于今日头条的兴趣引擎。 Knewton在国内的门徒众多,目前大概有40多家项目宣布发力做“自适应”,比如“乂学教育”(学练测自适应)、“学吧课堂”(题库自适应)、“英语 流利说”(英语口语纠正)、“一起作业”(家长、老师在线监控)等等。

嘉御基金创始人卫哲说过,“90%的人工智能项目都是伪AI”,鉴别的依据是看项目“算法速度”,如果是代数级而不是几何级计算那就不是“真AI”,以此来考验自适应项目,得到的结论未免让人失望。

初级的自适应项目是人工预设指令或编程规则推荐,高级的自适应是基于知识图谱推荐,即使是高级的自适应项目由于没有按照既定的教学大纲和教学目标有 逻辑地展开,在具体知识学习之中并不系统。关键是很多自适应项目采集的是各科最优秀特级教师的能力,导致其算法本身是线性的、模拟人学习而已。

自适应的技术原理就好比AlphaGo是应用了人类最优秀围棋大师的能力而非是完全迥异机器深度学习和自演化模型;自动驾驶AI应用了某个人类零误 差老司机的感知能力而非是基于全网海量交通大数据做运算和决策;人工智能医生是应用了看X片最快最准的医生的经验而非是海量数据库训练;显然按这样的路径 训练出的机器并非是真正的AI。

“真正拥有充分教学大数据及算法速度的‘AI教师’是能轻松超越拥有30年教龄特级教师的,并且可以突破人类的知识局限,对算法模型进行自动演化,找到人类从未尝试过的策略。”高木学习创始人刘瞻这样描述AI教师。

刘瞻是帝国理工学院科班出身,早在2015年开启AI教育创业,他认为判断真伪AI教育项目具体有三个考察维度:

(1)自适应是基于模拟优秀老师的知识图谱推荐知识,而真正的AI教育机器人则是泡在“教学实践大数据”中做深度学习。

(2)自适应主要用作知识盲点的统计,但无法分析出知识体系之间的本质联系,用AI更重要的任务是找到行为背后的原因,比如某学生表面上二次函数是 薄弱环节,既有可能是其对二次函数的各细分知识点掌握不牢,也有可能是前置知识点一次函数、函数的思想理解不透彻,还有可能是方程求解的问题;甚至有可能 是抽象思维或计算能力的问题,AI会根据该学生数据和“知识路径矩阵”,找到问题背后的原因从而匹配出最优学习路径。

(3)人类教师的情感因素能左右学生的学习效果,AI教师也应综合考虑学生的自信心与成就感的培育与激发,从而确保学生学习过程“知”、“情”、“意”的一体化。

二、AI教育的核心:帮助每个学生找到“元认知能力”AI教育并不会改变“老师-学生”的二元结构,甚至人工智能教育还要在师生两端彻底解决互联网教育未完成的两大难题:

如何帮助学生找到学习方法、提升学习效率?在中国一个普通中学生80%的学习时间是低效的。

如何帮助老师对学生更高效的“因材施教”?目前在我国师资资源依然整体短缺并且分布不均,1对1培优成本高、小班普及率低等问题依然突出。

AI教育的优势在于通过数据化形式分析学生自己都不清楚的“症结”,即所谓的“懂我更懂教好我”,同时AI还能帮助老师实现教学效果的稳定化和可控化。AI在充分收集和处理教与学两端的大数据后,还得在具体教学场景之中个性化建模,最终实现“让学生更会学,让老师更会教”,这是人工智能教育的目的。

陶行知先生说过,“教是为了不教”,教育本质不是灌输知识,而是要启发学生思考并让学生掌握自主学习的能力。目前很多伪AI学习神器只能“授人以 鱼”但并不能“授人以渔”,我国基础教育历来缺乏方法论课程,只有极少数有天赋的学生能自主制定适合自己的学习方案,而绝大多数天资处于平均线的学生在混 沌中摸索。如果从AI的视角来看,所谓“天赋”不过是少数幸运儿自觉不自觉的分享了“元认知能力”。

当人主动设定学习计划、自我反馈、动态调整学习策略时,就接近了“元认知”,在大数据时代,这种元认知能力是能被定量化分析的,AI 教育可以为学习者提供关于反复激活元认知能力的“训练法”。根据刘瞻的解读,AI教育的“训练法”就好比给蹒跚学步的婴儿安上矫正走姿的“学步车”,具体 应用什么样“训练模型”则是由AI根据大数据进行场景化定制的,有可能是通向学习目标所需要的“云梯”,有可能是“舟楫”,或者是“拐杖”等等,这些模型 能不断调取和强化人的“元认知能力”。

尽管市面上90%项目都是着眼于知识点和解题训练的自适应,真正AI教育项目比如高木学习的AI不仅包含自适应的知识图谱大数据,而且还能不断从学 生的行为数据中演化“知识路径矩阵”即AI可根据学生对知识和能力体系的理解定制出个性化学习路径。与此同时,AI让学生在对知识的理解与记忆过程中不仅 训练知识掌握度,还不自觉地训练了元认知能力,这套“个性化学习引擎”其实是在培养学生“忘掉所有知识后”剩下的元认知能力,具有普适化的特点。

实际上,AI教育并不需要局限在某一学习阶段、某一学科的知识体系,完全可以打造一个跨学科、跨门类、跨阶段使用的“通用知识学习引擎”,也就是说,除了应用在K12领域外,AI教育还可以应用在高等教育阶段,甚至在辅导大学生时比中小学生会更为轻松,无须综合考虑学生的学习动力因素等。

反过来讲,如果市面上的人工智能教育项目只能用于某一单科或只能教K12,就不是基于大数据获取和智能化引擎的“全才”和“通才”,基本可视为基于特定领域专家总结的经验规则的“伪AI”。

三、为什么AI教育项目落地,to B模式比to C模式更容易跑通?当前AI教育项目的商业化进程走向大体分为两大派:

一派是自建场景的颠覆派,试图开发新的测试软件以抓取学生的数据,甚至引入一些把AR(增强现实)、MR(混合现实)等黑科技,其目标是以“AI教师”完全取代真人老师教学,属于“人机对抗”模式,较为典型的是乂学教育的松鼠AI。

另一派是升级现行教育体系、不另创场景的改良派,属于“人机共教”模式,较为典型的是高木学习的AI Tutor。

一般走人机对抗模式最终走的是to C模式;而“人机共教”走的是to B模式。鉴于我国当前AI教育的应用场景主要为教学机构包括全日制学校与培训机构,而非一个个分散的学生;只有让AI去辅助老师备课、上课,嵌入到学生作 业和训练,帮助学生提分和学校提升升学率,才能帮助AI更快落地并且找到盈利模式。

从“全日制学校”应用AI的实践上看, AI能让老师“心中有数(据)”,提升教学的针对性,AI教师实际上相当于真人老师的“智能助教”,可以减轻老师50%的工作负荷量,比如AI帮老师批改 作业,把数据分析的可视化呈现出来帮助老师定制教研方案。因此,在市场推广过程中,AI教育项目不需要担心基层老师的接受阻力,能让老师摆脱“汗水老师” 的局面也是基础教育机构所希望看到的。

由于全日制学校获取的大数据比培训机构更加海量、持续、高频,因此高木学习更看重AI在全国全日制学校场景中的数据价值,积极在全国推行城市合伙人制度,并计划与地方教育主管部门合作推出全国教师AI应用能力培训公益活动。

To B模式中另一大企业客户就是体制外的培训机构,他们所面对的学生付费意愿强、购买力相对旺盛,是AI教育项目获得稳健现金流的必争之地,那么当前培训机构应用AI教育项目开展“人工智能双师班”的效果如何呢?

首先,AI教练能保持教学效果稳定化输出,解决原本老师教学效果不确定的弊端。

其次,AI 提升了老师的工作效率,突破了培训机构因为名师稀缺且流动性大限制培训机构的规模化发展的瓶颈。

再次,比如高木学习的AI帮助学生发掘了“元认知能力”增强学习信心、提分效果明显,帮助合作培训机构提升了续费率,为招生带来便捷。

篇2

2014年,栗浩洋再创业,成立了深耕基于人工智能技术的智适应学习的V学教育。数月之后即获得由青松基金领投的高达 3100 万人民币的种子轮投资,融资额几乎破了全球创业公司种子轮投资纪录。这家被投资人追捧的教育公司,到底有什么特别之处?

人工智能无疑是当下最火的科技概念。从BAT到创业公司,从传统行业到资本市场,无不对这一概念趋之若鹜。若是再结合医疗、教育等同样热门的领域,几乎毫无疑问会备受关注。深耕基于人工智能技术的智适应学习的V学教育,就是这样一家从成立伊始就带着“教育”与“人工智能”双重基因的公司。

V学教育董事长栗浩洋浸教育行业十几年,是业内知名的资深专家。而作为一个标准的“学霸”,他很早就对人工智能产生了浓厚的兴趣。当IBM的“深蓝”赢了国际象棋大师,栗浩洋受到了很大的冲击,他开始相信人工智能未来会颠覆世界。身为创业者,这样的机遇不容错过。

学霸的烦恼

有句网络上很流行的话说:“最可怕的是比你优秀的人还比你努力。”放在现实生活中,栗浩洋就是个很形象的例子。

读书时代的他像是开了挂:从小学习成绩拔尖,9岁就成为计算机实验生写游戏程序,初中就读完了高中全课程,荣获奥数一等奖,进入上海交大天才试点班。升大学时,北大、清华、上海交大、复旦等8所高校同时保送。分数对他而言从来就不是问题。

但这并不代表他没有缺点――中学时代,他有社交恐惧症。大学选择专业时,为了向陌生的学长学姐请教,他端着盘子在食堂游走了5天,最终也没敢开口。他是个不轻易认输的人,清楚地知道自己的弱项,然后加以训练。如今的栗浩洋思路清晰,语速极快,说起自己的项目来滔滔不绝。在各种论坛、演讲、路演的场合,他甚至有不间断发言6小时的纪录。

栗浩洋曾做过名为“人是自己性格的雕刻家”的主题演讲,详细描述了自己克服性格缺陷的过程。他说:“我要像一个雕刻家一样,把自己塑造成最完美的艺术品。”

这与V学教育的理念不谋而合。在栗浩洋看来,传统的教育培训十分简单粗暴,把教科书上的知识点全部线性推进,学完这个知识点才能学下一个。但每个学生知识点的掌握情况都不尽相同,如果好学生把大量时间用于重复学习已经掌握的知识点,而成绩较差的学生总在学习对他来说难度太大的知识点,最终的结果只能是所有学生的学习效率都很低下。要迅速提高学生的成绩,应该针对每个学生制订独一无二的学习方案,让他们有针对性地补好短板。

过去,有针对性的一对一辅导只能依赖经验丰富的老师,但这种辅导十分奢侈。“上海有300多个特级教师,最低的一小时的成本是1500块钱,最好的前10名大概要8000块钱一小时,而且只能上几百人的大课,根本不可能去一对一,哪怕你是土豪也支付不起这样的费用。”栗浩洋分析道。

而人工智能技术带来了梦想照进现实的希望。将人工智能技术应用于教育,自美国的Knewton公司始。为应付GMAT、SAT等全球性考试,Knewton做了一个智适应学习工具。该平台将各类课程数字化,建立在线教学资源库,为用户“个性化”选题,从而提高应试能力。

受此启发,栗浩洋看到了国内基础教育领域的机会,促使他创办了V学教育。就好比GPS和自动导航未来会代替老司机,V学教育也希望通过智适应系统代替老教师,一对一地用智能系统给学生授课,让每个孩子接受到最高级别和最高质量的教育。

现有的教育培训机构,不管模式怎么变,本质上还是传统教学,非常依赖于老师。V学教育则是依赖于科技。栗浩洋打了个比方:“一个教育机构聘请老师,就像聘请会武术的员工一样,那么最高的水平就是练成武术高手。但我们不是通过武术解决问题,我们是通过武器,通过飞机、大炮、导弹和航空母舰来解决问题。”

量体裁衣式的教学

用人工智能技术帮助学生学习,简单地解释,就像阿尔法狗用智能体系模拟围棋大师一样。V学教育智适应系统是用智能化的系统去模拟特级教师。对于特级教师来说,见到每一个学生,首先会快速摸底学生的学习状态。然后根据这个学生的学习状态、能力,以及学习习惯,采用不同的教学策略、教学方法和表达的语言,帮助这个学生进行学习。在学生学会或者没学会的不同情况下,会调整自己的方法。

特级教师教学的这种能力,是基于其过去几十年的教学经验和几千个学生,几万几十万的题目,以及这些学生在学习过程中会和不会的反应等大数据,以及自己大脑的判断。V学的解决方案其实就相当于把近百位特级教师的经验、智慧、大数据解决方案,放在智能大脑里面,然后用这个智能大脑去模拟教学过程。

V学的智适应系统,能够将每个知识点拆分成“纳米级”。所谓“纳米级”,是指把一个知识点拆成最基础的内容,变成最简单的颗粒,然后针对每一个知识颗粒进行专门的视频讲解、专项练习和专题测试。通过对学生进行精准的摸底测试,了解学生掌握了哪些知识点,哪些没有掌握,哪些掌握得非常牢固,哪些是略知一二。同时,智适应系统还能通过学生的反馈数据,不断地深度学习,提升测试的准确度。

栗浩洋举例说:“在错题本这种粗浅智适应的模式中,我们可能经常会判断一个学生说他是一个冠词掌握得不太好,但这其实是一个非常笼统的判断。冠词又分定冠词、不定冠词和不用冠词,那么这个学生可能是定冠词13种当中的第9种和第12种不会,以及不定冠词11种用法中的第7种和第10种不会。”

“一开始我觉得系统不靠谱,它给出的所有知识点我都掌握得很好,后来我一看里面的讲解,没想到被动语态可以讲得这么深,其实好多题并不是因为粗心做错了,而是还没有真正地理解。”这是一位通过智适应系统学习后的学生的真实反馈。一位风险投资人也曾亲测V学智适应系统,他是美国哈佛商学院毕业的学霸,系统竟然检测发现他有一个初二的数学知识点没有掌握,他一开始不相信,后来一翻书,发现自己真的没有掌握那个知识点。

根据学生的知识掌握情况和目标,智适应学习系统会自动规划最适合该学生的学习难度和顺序,不会让学生因为目标过高而丧失信心,也不会因为目标过低而失去挑战的欲望。通过这样的方式,让40分水平的同学可以逐渐提高到60分、70分,让70分水平的同学逐渐提高到80分、90分,最终使得所有不同水平的学生都能够循序渐进地提高到较高的水平。

栗浩洋坚信,找到合适的学习方法,每个孩子都可以成为学霸。“中国在几千年前提出的教育三大理念,就是教无定法,有教无类,因材施教,这三个词其实是对智适应教育的一个完美的诠释。”他表示。

让学习轻松快乐

“V”,一个有些生僻的汉字。栗浩洋与合伙人用这个字作为公司名大有深意。公司最早立项时,代号是“X PLUS”。他们认为,教育技术的深度对大多数人来说是未知,而且有着非常高的潜力待发掘,每个孩子都可以比过去提升10倍甚至百倍的学习效率,其中有无限的可能性,这是起名X PLUS的原因。

“与X最接近的中文字,就是V。V字在中文中作为动词时,有治理的意思,V天下就是治理天下。我们希望通过教育,可以改变整个中国社会。V字作为名词,又有才德出众的意思,我们希望把每个孩子都教育成才德出众的人,也就是说我们不仅希望他们提升学习效率,获得更高的分数,而且希望他们在素质教育上也有更好的提升,真正帮助孩子成为有能力,有礼仪,有智慧,有价值观的人。”栗浩洋介绍说。

这是栗浩洋在教育领域的第三次创业,显而易见,他有很深的“教育情结”。在他看来,对于世界上的每个人来说,教育是能够改变其一生命运的最重要因素。每个人出生的地域、家庭、国家等注定无法公平,但是如果是每个人都可以享受到这个世界上最优质的教育,就可以通过自己的努力,通过教育去彻头彻尾改变自己的人生轨迹。所以他觉得教育不仅仅是一个事业,也是一件非常有社会意义的事情。

与此同时,中国的整体教育水平相对较差,国家在教育上的投入占GDP的比例不足,教育理念也比较落后。因此,栗浩洋心中还有一份对国家和民族的使命感。“中国的学生数理化学得是全球最深的,孩子学得是最苦最累的。但是全球最好的科技却不是中国人发明的,都是美国那些学得很轻松,很自由,很自主的孩子创造的。这就说明我们中国的教育其实特别失败,所以我非常希望能够通过自己的力量,彻底改变中国教育这样一个现状。”

学生通过高效的方式学完了知识点,节约的时间就可以自由支配,花在兴趣爱好素质教育甚至是娱乐上。栗浩洋认为,这就是为什么国外的学生学得又轻松又好,而国内的学生学得又累又苦还是学不好。V学教育其实是要彻底解放孩子们的时间,让他们热爱学习又享受生活。

在对自家双胞胎儿子的教育上,栗浩洋践行着自己的理念。他每天都要抽出时间教儿子认字,孩子们进步的速度比他想象的快。1岁半的时候,他们就认识了500多个汉字和100多个英文单词;3岁不到读了300本书;3岁的时候可以和外教进行简单的日常英文对话;在好奇心、想象力、逻辑的组织能力上更是超过同龄人许多,并且非常快乐。

栗浩洋对他们有很多期望,比如希望老大成为第一个不是在美国出生的美国总统,希望老二成为金融家,做出超过高盛的金融集团。“但是我并不会勉强他们,也做好了所有的准备。哪怕他们想做地下摇滚歌手、和尚、义工等等,都可以。”

方向对了路还长

作为连续创业者的栗浩洋,成功过也失败过。但现在他信心十足。

在教育研发方面,栗浩洋拥有超过十年的经验,对教材、配套动画片、网络产品都有很多心得。栗浩洋认为,过去的经验和教训,可以让V学的研发过程至少少走三四年的弯路,能够达到比其他同行更高的效率。教育行业的研发有着非常高的壁垒,如果没有在行业中摸爬滚打过五年八年,直接做研发,会跌入很多坑。

其次,传统教育模式中最重要的因素师资力量,对V学教育已经完全不是问题了。大型教育机构在全国发展的时候,遇到的最大问题就是师资力量。培训老师的成本非常高,老师的流失率也居高不下。留下来的老师,若干年后水平也参差不齐。而V学教育采用的是“中央菜谱”的方式,就像肯德基麦当劳一样,所以全国所有的学生得到的都是最好的资源。

事实上,V学教育的野心不止在线上。其在线下的实体学校,今年会开到100家,明年还要新增300家。他希望通过5年的时间,开设2000多家学校,做到100万学生的规模,以及超过30亿元的销售额。未来,V学会在全国设几千个,甚至一两万个学习中心,所有的学生都可以在线下培训中心进行学习,但是老师是通过智能化系统在线上完成教学,所以V学教育是要做一家真正把线上线下结合到极致的公司。

在中国五千亿规模的培训教育市场中,新东方、好未来、学大等知名教育机构加在一起,基本只占1%左右的市场份额。根据日本、韩国的教育市场调研可以推断出,中国第一大的教育企业可以占到10%的市场份额,中国有40多万家培训机构,也就意味着行业第一应该可以开到4万家培训机构。摆脱了师资力量的约束,V学教育能够实现这样的目标吗?栗浩洋不清楚,但会以此作为努力的方向。

但栗浩洋也清楚,现有的智适应技术还谈不上尽善尽美。最大的问题,是系统和知识点的匹配度的问题。真正要发挥这个系统的作用,那么所有的教学内容和知识点,都必须尽可能为这个智适应系统所研发,才能达到最好的效果。这就要求之前做线下教育的教学专家,必须了解智适应的系统和算法能力,了解引擎,了解这一套系统的运转原理,以及其所要达到的目的,才能够生产与这个系统相适应的内容,而这需要时间。

为了进一步探索智适应教育最深层的可能性,以及未来的发展,和科学与最前沿的一些技术,V学教育与国际顶级高校及教育专家共同开设了“智适应学习研究联合实验室”。这些探索不是马上就可以商业化和实践的,而是一些前沿性实验技术,代表了最高的科技水平。在实践层面,V学秉持开放的态度,愿意与优秀的传统教育机构深度合作,提供智适应学习引擎。这一切,都是为了帮助更多孩子享受到最好的前沿科技和教育方法,给他们带来快乐和效率。

BM:人工智能可以细分出很多种技术,你认为其中还有哪些能和教育相结合?

L:人工智能中的很多技术其实都可以和教育相结合,只不过是深度和浅度的问题。比如说语音识别技术在未来就会非常重要,通过视频连接学生的语音,人机交互的感受会更好。

机器人未来也可以作为助教的形式,提供一些服务。我们在年底之前,就会在每个学校都配置人工智能机器人,来完成一些简单的互动和辅助的工作。

人工智能的语义分析相对来说会更加深入一些,因为很多题目是主观题,如何进行比较智能化的语义分析、分类和评判,就变得非常重要。

除了人工智能技术之外,现在非常火的VR和AR技术,在教育领域的应用也是非常广泛的,我们也正在研究如何用最高效的手段,通过这些技术来去提升教学效果。

BM:V学产品研发中融入了多少你的个人经验?

L:因为我自己从小学到大学,获得过数学奥林匹克和全国竞赛一等奖,再加上计算机专业的学习背景,所以我对技术方面的理解度,其实是超过绝大多数人的。我提出过很多算法方面的理念,都是同事非常认可的。我个人会在研发中和大家有很多思想的碰撞,智慧的交流,和研发团队一起商量如何去解决各种各样的问题和困难。

BM:你与合伙人是怎样分工协作的?

L:目前在V学教育我担任的是董事长的职位。CEO周伟,CTO樊星,以及首席科学家崔炜博士,他们承担了大部分的工作。我主要的核心工作就是战略思考,研发,还有团队组建这三个方面。

BM:智适应学习系统能否惠及成人?

L:可以的,海外的智适应教育在18岁以上的教育和职业教育中非常普及,智适应教育其实是有普适性的。在美国,不但是物理、数学这样知识点结构非常清晰的学科可以使用,像经济学、生物学和心理学等所有学科,都可以使用。

BM:公司目前融资情况如何?资金会用在哪里?

L:我们这一轮是一个大的天使轮融资,目前已经签署了意向协议,大概会是1亿元左右的资金。不管在教育行业还是创投行业,都是非常大的一笔资金,这也显示了风投对智适应教育行业的看好,对我们团队的一个认可。这些资金里面,60%会用于智适应教育的研发,包括人工智能引擎的研发,在纽约的研发中心的投入,所有智适应教学内容的研发,以及学生和家长使用的系统的开发。其余资金要用于线上线下的推广,我们要在全国开出数万家学校,同时也要在线上进行电话销售,但是这两方面现金流收入会比较好。

篇3

关键词:教学改革;人工智能;游戏设计;游戏编程

人工智能(Artificial Intelligence,AI)是计算机科学的一个分支,是研究、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学[1]。人工智能技术研究领域包括机器人、模式识别、自然语言处理、机器学习、数据挖掘、人工神经网络和专家系统等[2],其最为广泛的应用之一就是游戏设计[3]。游戏设计虽然涉及多门学科,但其作为应用并没有形成一门单独的理论[4-5]。由于游戏存在较大的市场以及其作为人工智能的一个重要应用,国外已有多所大学开设了游戏设计课程。如卡内基梅隆大学(Carnegie Mellon University)于1999年设立了娱乐科技硕士学位,并开设了相关课程;南加州大学(The University of Southern California)设立了为期3年的互动媒体艺术(fine arts in interactive media)硕士学位课程,并于大学部设立电子游戏设计(video-game design)副修课程。该校也为美国军队创作训练士兵的电子游戏,透过战斗情境模拟来进行沙盘演练。麻省理工学院(Massachusetts Institute of Technology)提供多种电子游戏设计相关课程,并研发将电玩游戏纳入教室教学的方法。斯坦福大学(Stanford University)提供电子游戏设计史及包含最佳电子游戏竞赛奖的计算机绘图课程。华盛顿艺术学院(The Art Institute of Washington)为亚特兰大艺术学院的分校,提供授予学士学位的视觉及游戏程序设计课程。在初期的艺术与设计重点培训后,学生将学习立体动画相关技术。国内也有多所高校开设了游戏设计的相关课程,如北京邮电大学,首都师范大学等,为了适应市场许多培训机构也开设了游戏设计课程,但培训机构将课程的重点放在了实际的编辑代码中而过少的关注理论。中南大学开设人工智能课程已有20多年的历史,在教学实践中,中南大学智能系统与智能软件研究所的教师们在教学科研方面取得了许多令人振奋的成果。在良好的环境中,人工智能与游戏编程课程应运而生[6-7]。

1教学目标与要求

中南大学人工智能与游戏设计课程主要面向智能方向4年级学生,在4年级第一学期开设。学习该门课程之前需要具备人工智能以及计算机编程方面的课程知识,并且需要一定的计算机图形学的相关知识基础。

此门课程的学习使学生了解游戏设计与虚拟现实的基本概念和术语及其基本设计方法,理解人工智能在游戏中的相关应用,熟悉游戏设计中编程以及建模技术,为学生将来利用人工智能技术以及游戏设计技术奠定必要的知识基础。除此之外向学生介绍计算机游戏的基本原理和最新进展,包括计算机游戏动画的最新概况、游戏程序设计概览、2D游戏的基本编程技术、3D游戏动画的基本编程技术、3D游戏场景的组织与绘制、游戏中的高级图形技术、游戏中的音频编程、游戏中的人机界面技术、人工智能在游戏动画中的应用,纹理贴图、基于图像的绘制和加速算法等。

基于该教学目标,本课程有两个重点内容,其分别是人工智能技术如何在游戏设计中的应用,以及游戏编程的相关技术。对于人工智能技术在游戏设计中的应用这一内容,主要采用理论结合实际的理念,将学生已具备的人工智能理论知识与游戏设计的具体应用联系起来,使学生一方面能体会人工智能的基础理论,另一方面使学生能够将其所学用于实践,避免理论与实践脱节。游戏编程内容主要从设计模式入手,然后依托多媒体平台对学生进行讲授设计以及编程方面的相关知识。

围绕这个教学目标,我们安排了28个学时的课堂教学,4个学时的实验,总共32个学时的课程。接下来针对课堂教学、实验设计、考核方式这几个方面分别展开讨论。

2课堂教学设计

本课程采用培训学校模式与大学理论教育折中的方式进行讲授,本节将着重对28个学时的课堂教学内容分别介绍。

1) 游戏程序设计概论与计算机图形学基础。

该部分内容可以分为以下两部分。

(1) 计算机游戏简介与游戏设计概论(2课时)。

(2) 计算机图形学基础(2课时)。

概论部分主要介绍计算机游戏的基本概念、特点以及目前国际上该领域的研究和应用情况。图形学部分主要是介绍计算机图形学的相关理论基础,目的是让没有学过计算机图形学的学生有一定了解,由于考虑到智能专业也开设计算机图形学的相关选修课,因此,本部分内容只是对之前学习的相关知识的复习,目的是为后续的程序设计课程打好相应的理论基础。

本次课程是正门课程的开篇之讲,一方面,教师要开宗明义,让学生明确何为计算机游戏,并对计算机游戏有大致的了解,为后续课程学习起铺垫作用;另一方面,为增强学生学习兴趣,必须介绍计算机游戏的类型以及各种知识与其的关联。

2) 游戏编程技术。

如上所述,游戏编程是本门课程的一个重点内容,游戏编程可以分为如下几个部分。

(1)Windows编程基础(2课时)。

(2)DirectX编程基础(2课时)。

(3)2D游戏的基本编程(2课时)。

(4)3D游戏场景的组织和绘制(2课时)。

(5)3D动画的基本编程技术(2课时)。

(6)游戏中的人机界面技术(2课时)。

对于Windows编程基础,其主要内容是Windows操作系统的发展史、Win32程序的基本结构、消息循环与处理、Windows窗口、GDI接口、集成开发环境(IDE)。

DirectX编程[8]基础的主要内容是DirectX开发包的历史及其框架、介绍每一个组件的功能、DirectX开发包的安装以及与IDE连接的配置。

2D游戏基本编程的主要内容是游戏的基本流程和体系结构、游戏开发的基本理念及方法、游戏引擎简介、游戏的调试与测试。

3D游戏场景的组织与绘制的主要内容是3D场景的组织与管理、游戏场景的几何优化、3D场景的快速可见性判断与消隐、地形场景的绘制与漫游、3D游戏场景中的碰撞检测。

3D动画的基本编程技术的主要内容是3D动画技术概述、Direct3D开发包的使用、关键帧动画技术、基于动作捕捉的动画技术、脚本驱动的动画技术。

游戏中的人机界面技术主要内容是游戏的可玩性与人机界面、用户界面设计基础。

游戏程序设计部分内容主要是让学生了解和掌握面向Windows平台的游戏编程的技能。现在绝大部分游戏和娱乐都是基于Windows平台,因此掌握Windows平台的设计模式与编程方法是必须的。又因为DirectX软件开发包是微软公司面向Windows平台开发的一套专门应用于游戏开发的API,因此了解其原理以及掌握其技术能够提高学生的游戏开发能力。

3) 人工智能在游戏中的应用。

如今的游戏应用了大量的人工智能技术,本门课程将从以下几个方面介绍人工智能技术在游戏中的应用。

(1)遗传算法(6学时)。

(2)神经网络(6学时)。

遗传算法主要内容是遗传算法的概念及其相关研究、杂交操作、变异操作、适应性函数选择、遗传算法优化的算子、创建和处理矢量图形。

神经网络主要内容是神经网络概述、适应性函数、环境探测、有监督的学习、演化神经网络的拓扑。

该部分内容主要是介绍如何将人工智能中的理论用计算机语言实现,并介绍如何在游戏设计中应用这些理论。这部分内容是本门课程一个核心内容,通过学习学生们能够认识到人工智能在游戏设计中的重要性,并提高应用能力。

3实验设计与课程设计

由于该门课程为选修课,因此课时较少,除课堂课时之外只剩下4个学时的实验课时。我们针对这4个课时的实验进行了重点设计,其主要内容是引导学生熟悉Visual Studio .Net 2008集成开发环境、安装与配置DirectX 软件开发包、使用有限状态机设计状态驱动智能体,设计2D图形驱动引擎。

虽然课时很短,但学生能够实际动手操作,熟悉游戏编程的相关开发工具与开发包,另外,学生学习兴趣提高了,学习内容从枯燥的抽象概念、理论变成实际的事例。此外,学生还可以在课下完成任务,继续钻研新的理论应用。

我们针对本门课程实验课时少的缺点,特别设定了一个课程设计环节。课程设计并不占用实验课时,而是要求学生利用课外的时间,自由组合,以团队的模式完成相应的设计要求。

课程设计主要内容是要求学生完成一个项目设计,该项目设计主要是要求学生使用相关的集成开发环境和开发包,利用一个人工智能技术编写出一个小的游戏软件,并给出设计报告。考虑到学生的实际能力,开发与报告以小组的形式进行设计开发,设计团队由3~5人自由组合,具体分工必须在报告中体现,报告要求不少于4000字,以软件开发文档的形式提交,报告中不仅有游戏软件的需求分析文档、设计文档和测试文档,还必须包括游戏的内容设计,即游戏的情节创意或功能设计。设计题目以及游戏类型由学生自选,图形界面可以是3D也可以是2D,开发包可以使用Direct3D也可是Windows自带的GDI。

4考核方式及其安排

考核一个方面是检测学生学习的状况,另一个方面是为了通过考核方式,提高学生的实践动手能力。基于这个原因,我们将整个考核分为3个模块。

1) 期末考试(开卷),占总成绩的50%。

2) 项目设计,占总成绩的35%。

3) 实验,占总成绩的15%。

期末考试采用开卷形式,主要目的在于检测学生通过课程学习,对知识点的掌握程度,以及运用知识点解决问题的能力。其占总成绩比例的一半。虽然期末考试为开卷,但考核的知识点无法直接从教材中直接找到,需要学生实际运用能力和解题手段才能完成答题。精心设计的开卷试题,可以使学生对虚拟现实知识体系进行一个系统的回顾,同时,它也是对教学的补充。

课程设计需要学生有很强的自主性,认真完成将使学生受益匪浅,敷衍了事不仅学生没有得到锻炼,教学目的也难以达成。课程设计以小组的形式有优势也有劣势,好处在于学生可以根据自身能力对应团队中的角色,例如,某同学编程能力强,他可以作为程序设计与开发人员;另一同学数学好,或理论方面出色,他就可以担任算法设计的工作;某些同学有创意,他则可以担任游戏情节设计的工作,等等。这样做分工明确,每个人都能够根据自己的实际需求和情况得到锻炼。劣势在于,如果团队同学能力重点都一样,就会出现分工不清,而最大的问题就是团队合作会导致某些同学出现依赖思想,最终导致整个团队只有一个人完成整个项目,甚至导致项目无法完成的情况。对此,我们应当强调每一个学生都要积极主动参与到课程设计中来,发挥自己的主观能动性,协作完成项目。

5结语

本文探讨了人工智能与游戏设计教学目标与任务、课堂教学、实验设计、考核方式,希望能够给其他相关教学工作者以参考和启发,共同促进其完善与提高。

由于人工智能与游戏设计这门课程是中南大学新开的一门课程,在许多方面存在考虑不周或欠缺的情况,需要向兄弟单位多学习并且多在教学实践中摸索与提高。本门课程是以中南大学智能系统与智能软件研究所为依托,它具有很好的研究基础与良好的实验平台,并能够将这门课程融会贯通,使学生理解人工智能与游戏开发设计的基本理念,并培养学生实际应用技能。

参考文献:

[1] 杨刚,黄心渊. 虚拟现实技术课程的教学设计与讨论[J]. 计算机教育,2008(2):1-3.

[2] 蔡自兴,徐光v. 人工智能及其应用[M]. 3版. 北京:清华大学出版社,2003.

[3] 刘锴. 应用型院校的虚拟现实技术课程教学探讨[J]. 电脑知识与技术,2009,23(5):6486-6487.

[4] 刘明昆. 三维游戏设计师宝典:Virtools开发工具篇[M]. 成都:四川出版集团,2005.

[5] 王一剑. 人工智能在游戏开发中的应用[M]. 上海:同济大学软件学院,2008.

[6] 于金霞,汤永利. 人工智能课程教学改革及实践探讨[J]. 教学园地,2009(5):91-118.

[7] 蔡自兴,肖晓明,蒙祖强,等. 树立精品意识搞好人工智能课程建设[J]. 中国大学教学,2004(1):28-29.

[8] Microsoft. DirectX Software Development Kit[EB/OL]. [2010-7-20]. /downloads/details.aspx.

Design in Artificial Intelligent and Game Programming Courses

LI Yi

(Institute of Information Science and Engineering, Central South University, Changsha 410083, China)

篇4

上半年工作目标:

1.坚持面向广大青少年开展兴趣特长普及性活动。重点抓好围棋、跆拳道、中国武术、小模特、民族舞、拉丁舞、街舞、酷吧机器人、航模、沙画、葫芦丝、钢琴、吉他(尤克里里)、架子鼓(非洲鼓)、相声曲艺等18项专业的培训工作,丰富青少年的课余生活,促进广大青少年特长的提升。

2.坚持免费开展公益性活动。利用寒假等节假日开展留守儿童关爱活动,与学校联合组织研学活动。继续打造“四点半彩虹公益学堂”品牌活动,充分挖掘“彩虹”公益活动特色文化,做实做优“四点半彩虹学堂”、“彩虹围棋学堂”等公益学堂,招收一批家庭贫困、有兴趣爱好的学生免费学特长。

3.发挥校外活动中心的辐射作用,整合周边城区“学校少年宫”优秀师资带动“农村学校少年宫”建设。

4.办好家长学校总校,常态化开展家庭教育讲座活动。

完成情况:

2020年上半年因疫情影响,很多的工作计划没有得到实施。到5月下旬中心才开展了“四点半彩虹公益学堂”和周未特长班。

利用疫情这段时间,中心主要做的工作有:

1、 对新科技馆进行规划、设计;

2、 修缮了中心房屋渗雨的问题,楼顶重新做了防水,对中心进行安全隐患排查;

3、 对中心课程进行了优化调整,规划下半年工作任务。

存在问题:

做为公益性培训机构,无教学管理人员,无专业艺术老师,建议局领导能优化师资给予配置。

二、下半年工作计划

1、开展好青少年校外教育公益性活动

定期或不定期开展青少年校外教育公益课堂和活动。联合学校做好校外教育的组织联络工作。开展公益讲堂,邀请孩子、家长免费听各种知识讲座;开展多样的校外活动,带孩子拓展社会实践,增加孩子的认知能力。中心将继续开展好“四点半”彩虹课堂、国学课堂、家教沙龙、才艺沙龙、出彩少年郎等公益活动。同时我们利用中心艺术教师积极、义务地为有需要的学校打造特长兴趣社团。

2、做好机器人科技馆的改造建设

下半年建成机器人工作室,与宿迁学院机器人创客项目合作,做好机器人的教育培训,让孩子们了解机器人的搭建、编程及参加比赛,培养孩子们对人工智能技术的兴趣,真正认识智能机器人对社会进步与经济发展的作用,培养孩子的科学素养。

3、建立新的运营管理机制

今年中心将开设舞蹈、美术、书法、围棋、葫芦丝、竹笛、“四点半”课堂等项目。特长班采用分块化管理,主要分为舞蹈组、书美组、“四点半”彩虹学堂组、器乐组、棋类组,每个组由一名工作人员做组长,负责该组的特长班教学管理、考级和各项活动及比赛,让项目都有团队,让团队管理让他们课程出彩,办出特色,塑造精品。

篇5

一是疫情防控和复学复课平稳有序。市教体局组建延迟开学、防疫消杀等11个工作专组,全力呵护师生生命安全和身体健康。先后协调成立了64个包校领导小组,76个进校工作小组,17个镇街(园区)工作督导组以及13个核验组,有序推进全市162所中小学、192所幼儿园分批次错峰开学,159573名学生返校学习。中小学复学后,组织13个核验工作专组,对校外培训机构复课条件进行了核验检查,推进390家校外培训机构复工复课。严格落实常态化疫情防控各项措施,切实巩固了疫情防控良好形势,保障了广大师生的生命安全和身体健康,2020年全市高考、中考工作安全平稳有序。

二是各级各类教育协调优质发展。高考再创佳绩,继续保持各县市领先位次。公开遴选全市第三届兼职教研员170人,切实发挥教研引领作用。深入推进“区域全链条育人模式变革”项目,积极探索线上线下的教学融合路径,开展主题网络教研90余科次,线上教学调度会议20余次,推送空中课堂495节。举办全国新教育实验线上开放周活动,向在线学习的8万余人介绍我市课程建设经验。出台《2020年市城镇居住区配套幼儿园专项整治工作实施方案》,加快城镇居住区配套幼儿园专项整治;完成13所普惠性幼儿园建设任务。牵头起草《市职业教育创新发展实施方案》和《关于进一步落实职业院校五项办学自的通知》;“职教高考”本科过线523人,位居全省前列;工商职业学院“人工智能实验室”项目获省教育厅民办基础能力建设项目立项;9个1+X证书试点专业被纳入教育部改革试点专业。坚持疏堵结合、联合执法、综合施策,实现不合格校外培训机构“清零”目标,建立对390家校外培训机构的长效监管机制。推动青潍中学增设高中部,促进民办教育规范健康发展。推进家庭学习中心户建设,社区教育网络更加完善。10项“疫情与教育”专项课题获得省级立项;10件作品分获省青少年科技创新大赛一、二等奖,获奖数量列各县市第一名;社区家长学校被评为“全国家庭教育创新实践基地”。

三是干部教师队伍持续优化。柔性引进高层次人才3名。招聘新教师484人,其中事业编教师324人,总量控制人员160人。全市正高级教师评审通过19人(全共64人),其中农村基层正高9人。实施中小学校长治校育人能力提升工程,组织“龙城校长大课堂”和治校育人成果展示活动。深化县管校聘工作,教师全部参加岗位竞聘,其中511名教师跨校交流竞聘。队伍素养持续提升,5人被评为市特级教师、2人被评为最美教师、5人被评为市教书育人楷模,30人被评为市特级教师。