发布时间:2023-10-11 15:54:31
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇物联网智能教育,期待它们能激发您的灵感。
随着信息技术和互联网技术的广泛应用,人类社会步入了高度信息化的时代,信息获取方式逐步从人工生成的单一模式向人工与自动获取并重的模式发展,强烈的社会需求为物理世界与信息世界的融合提供了原动力,物联网随之扑面而来。
物联网应用涵盖的范围小到家庭网络,大到数字医疗、智能交通、公共安全,控件探测,甚至是国家和世界,受到了各国政府、产业界与学术界的高度重视。
物联网对教育事业的促进作用也日趋明显,尤其是基于RFID的校园一卡通工程对管理水平的提高为高校教育的改革和发展提供良好的技术支持,许多高校正在努力构建全面智能感知个性化服务的学习环境,实现新的教学环境:无处不在的网络教学、 融合创新的网络科研、透明高效的校务治理、丰富多彩的校园文化、方便周到的校园生活,为教育学生提供良好的环境和设施条件 [1]。
本文作者通过对物联网的研究,利用物联网技术,构建了智能化集成教育系统,对物联网技术支持下的教学进行了初步的研究和探索。
1 物联网及物联网技术
1.1 物联网的定义和特征
物联网在人类生活中的应用越来越多,但是人们对物联网的定义任然没有明确和统一。在比较各种物联网定义的寄出上,根据目前对物联网技术特点的认知水平,将物联网定义为:物联网是在互联网和通信网等基础上,针对不同领域的需求,利用具有智能感知、识别技术与普适计算等技术,自动获取物理世界的各种信息,将所有能够独立寻址的物理对象互联起来,实现信息化、远程管理控制盒智能化的网络,构建物物相联的智能信息服务系统[2]。
物联网中任何一个合法的用户(人或物)可以在任何时候(Anytime)、任何地点(Anywhere)与任何一个物体(Anything)通信,交换和共享信息,协同完成特定的服务功能。
物联网分为感知层、网络层与应用层。感知层是物理世界与虚拟世界的纽带,是物联网的基础。感知层主要负责信息采集,利用激光识别等技术实现物联网中人与物、物与物之间的信息交互的传感器技术。网络层是物联网规模应用的基础设施,包含局域网、城域网和广域网的各种接入网络。应用层提供海量数据的高效、可靠地汇聚、整合与存储,通过数据挖掘、智能数据处理与智能决策计算,提供安全网络管理与智能服务。
物联网是一个形式多样、设计社会生活各个领域的复杂系统,从实现技术角度看,物联网的特点是:网络的异构性,规模的差异性,接入的多样性。
1.2 物联网关键技术
物联网的多样化、个性化与行业化的特点,使得物联网涉及的技术种类繁多,从物联网应用系统设计、运行、应用和管理的角度来看,物联网技术主要包括:自动感知技术、嵌入式技术、移动通信技术、计算机网络技术、智能数据处理技术、智能控制技术、位置服务技术和信息安全技术。物联网技术的引入可以使得现实世界的物品互为连通.实现物理空间与数字化信息空间的互联.使真实空间与虚拟学习环境实现比较有效地整合。它让教学环境中每个物件形成数字化、网络化、可视化特性,学生在课堂中就可以感知自然、感知真实的场景.有效地促进人机交互、人与环境的交互,加强了师生之间、生生之间的交流[3]。
2 智能教育系统概述
传统的教学体制和教学系统仅仅是为学生提供了学习的空间,相对而言,智能教育系统为学生提供了一个全面的智能感知环境和智能学习服务平台,有效地采集学生学习的相关信息,获得个性化、智能化的学习和管理服务。
智能教育系统,能够智能化的针对每一个学习者、每个学习阶段的学习信息进行采集和处理,建立新一代的学习环境和交流环境,该系统能够利用智能手机、RFID标签与读写设备以及各类型的传感器实时的采集教师的教学轨迹和学生的学习痕迹,同时进行统计分析和处理,把传统的以“教”为主的教学形式,改变为以“学”为主的形式,更能调动学习者的学习积极性和主动性,及时反馈和调整教学内容,体现因材施教、因人而异的教学风格。
3 智能系统设计
物联网技术的引入使得智能化教学环境的每个物件都具有连通性、技术性、智能性、嵌入性的特性,可以随时捕捉、分析教师和学生信息,并进行反馈,提供一个物联网智能化的教学系统[4]。
本文利用物联网设计的智能化教学系统主要包括智能管理模块、智能资源模块、智能监测模块、智能导学模块、虚拟交流社区五个模块,如图1所示。
1) 智能管理模块:实现对系统中学习者的信息管理、实施双向教学评价考核、学习辅助工具集成和成绩查询等功能。
2) 智能资源模块:在学生的学习资料和教师的教学材料中加入RFID标签,使得这些资料置身物联网之中,具有物联网中多样性、智能性、规模性、嵌入性等特性。通过互动终端通过3G/4G 网络连接终端资料数据库和多媒体库,根据课程教学大纲提供的内容要求获得关联的教学资源,结果输出到学生或教师所在的网络终端[5]。同时存放专门针对移动学习优化过的大量课件资源、考试试题库、知识库、新闻消息库和有关系统运行的数据等。
3)智能监测模块:通过智能摄像头、智能手机、智能测控设备等记录和实时采集学生的学习痕迹和教师的教学轨迹。同时集成了学习评价系统,通过对学习者的学习时间、阅览次数和学习地点、学习对象以及参与交流与协作的指标等进行统计分析,得出关于学习者的学习积极性、学习深度和学习效果等情况的综合评定,连同学习后获得的成绩和学分一同记录到后台相关数据库中[4]。
4) 智能导学模块:通过数据挖掘、智能数据处理与智能计策计算,将智能监控模块中采集来的数据进行有效的整合、统计分析和利用,分析学生的学习需求和学习兴趣,,为每个学生进行个性化学习推荐,大豆更好的教学效果。
5) 虚拟交流社区:通过无线智能设备如无线笔、无线话筒等,实现基于语音、视频和文字等多种信息媒介的互动交流功能,为学习者提供方便快捷的网络通信,强大的信息交流和网络资料信息的共享支持,在线虚拟团队合作等功能。
关键词:物联网;智能控制;实践教学;中国制造;智能制造
0引言
“中国制造2025”部署了全面推进实施制造强国战略,提出智能制造作为中国制造的主攻方向。在《中国制造2025》中还指出加快开展物联网技术研发和应用示范,推动智能交通工具、智能工程机械、服务机器人、智能家电、智能照明电器、可穿戴设备等产品研发和产业化。随着物联网技术在智能控制领域中应用的不断深入,社会对掌握智能控制技术和物联网技术的应用型人才的需求会越来越大。基于物联网的智能控制项目实践教学改革对提高学生的工程应用能力,使学生掌握行业前沿技术的能力,提升学生的就业竞争力有着重要的意义。
1目前教学中存在的问题
(1)课程理论性强,内容多且抽象,缺少相应的实践,学生对理论知识难以掌握;课程学时少,学生投入的学习时间和精力不足,无法自己寻找实践项目,缺乏实践;与课程教材相配套的实验方案较少,导致实验难以有效地开展。
(2)智能控制课程实践教学大多以仿真为主,缺少面向技术前沿的实践环节。大多数高校学生做实验就是利用MATLAB的Simulink、GUI等工具设计各种控制算法和建立智能控制系统模型,从而实现对系统的仿真。学生对实际的工程项目应用不了解,不利于创新能力和职业能力的培养。
(3)课程考核方式没有体现对能力的考核。减少单个知识技能的考核,增加知识能力体系的考核。
2实验平台选择
我们的实践项目所用的实验平台是北京精仪达盛科技有限公司生产的物联网实训开发系统,系统由物联网视频移动开发平台实验箱和物联网节点实验箱组成,主要特点如下:
(1)多环境支持。提供基于C#、C++、Java的开发包及已封装的函数接口,提供智能手机开发包及已封装的函数接口,可进行物联网项目的二次开发。
(2)接口丰富。RJ45 10M/100M自适应以太网接口、标准RS-485串行通信接口、模拟视频输入接口、视频输出接口、支持SD卡接口与存储、USB接口、支持WIFI和3G网卡。
(3)功能强大。支持CMRTP网络协议,能同网传感图像信息、声音信息、传感器信息、控制信息,节点信息;支持多用户智能移动终端同时访问ZIGBEE NVS网关;智能手机、IPAD等;内置WEB SERVER,网络参数设置简单;可配置成服务器工作;支持多用户端同时访问ZIGBEE NVS网关;远程PC机访问。
3实验项目设计
3.1实验项目构建
基于物联网的智能控制实验项目从技术架构上来看,分为3层:感知层、网络层和应用层,如图1所示。
感知层的节点采集到数据经过网络层传输与服务器通信,然后应用层中的客户端用软件登录服务器,登录后即可控制和查看感知节点的信息。客户端可以通过软件看到感知节点采集的信息,发送控制命令去控制对应的实物,包括门禁、窗帘、灯光、摄像头等。各层所安排的实验项目及课时见表1。
(1)感知层由各种传感器以及传感器网关构成,感知层的作用相当于人的眼耳鼻喉和皮肤等神经末梢,它是物联网识别物体、采集信息的来源,主要功能是识别物体,采集信息。感知层开设的实验项目包括气体浓度传感器、温度传感器、湿度传感器、二维码标签、RFID标签和读写器、摄像头、GPS等智能感知终端等实验。感知层节点包括感知节点和控制节点,感知类节点包括测试火灾和烟雾的传感节点、采集空气温湿度和土壤温湿度的传感节点、探测红外的传感器节点,控制类的节点包括:控制门禁的节点、灯光和电源的传感器节点以及可以远程控制监控的无线云台节点等。感知节点和控制节点可以联动,可以结合起来作为实训项目。
(2)网络层由各种移动通信网络、互联网、网络中心和信息中心等组成,相当于人的神经中枢和大脑,负责传递和处理感知层获取的信息。在网络层中,传感器与协调器之间的传输都是利用Zigbee进行相互通信的,而且由网关接收到感知层的信息,然后通过网络和无线通信方式传输信息给服务器,用户可在客户端上观察到感知节点的数据,并且可发送控制指令给协调器去控制节点。网络层的实验项目只需要了解路由器的设置,包括局域网和广域网络的设置,因此安排的实验课时较少。
(3)应用层是物联网和用户(包括人、组织和其他系统)的接口,它与行业需求结合,实现物联网的智能应用,是智能控制实践中最关键的部分。实践项目包括智能交通控制系统、工业控制系统、智能农业控制系统、智能家居控制系统、智能物流控制系统、智能制造控制系统、智能安防控制系统等。
3.2实验项目举例
智能控制在物联网背景下有着广泛的应用,尤其体现在工程应用实例项目上。
1)监控土壤环境状况。
将传感器植入土壤或暴露在空气中,由传感器采集到的数据通过物联网传输至远程控制中心,可及时了解当前农作物生长环境和变化趋势,确定农作物生产目标。通过智能控制,可实时掌握环境温度和土壤各项参数等对农作物产量的影响,并进行参数的调节,最大限度地提高农作物产量。
2)产品制造和质量监控。
制造业集成了多种先进科技的流水作业。生产制造过程中伴随有大量数据,如产品加工条件或控制参数(时间、温度等)。通过收集这些数据可反映每个生产环节的状态,对生产的顺利进行起着至关重要的作用。通过智能控制可得到产品质量与参数间的关系,从而获得针对性很强的建议,以改进产品质量,而且可能发现更高效的控制模式,带来丰厚的回报。
3)天气预警。
一方面,利用智能设备随时关注气象信息,并针对雨天发出报警提醒;另一方面,智能终端随时跟踪用户行踪,并通过智能控制由用户历史行动特征数据预测去向。一旦预测到用户要出门,就在合适的时候由相应智能终端提醒其带雨伞。如用户在门口,就将由安装在门上的智能设备发出提醒;如在车内,则由车载计算机发出提醒。
4基于CDIO的项目考核
CDIO(conceive、design、implement、operate,构思、设计、实现、运作)是当今国际高等工程教育的一种新模式,由美国麻省理工学院和瑞典皇家工学院等4所大学共同倡导。这种模式更加注重扎实的工程基础理论和专业知识的培养,通过每一门课程、每一个模块、每一个教学环节来落实产业对能力的要求,满足产业对工程人才质量的要求。结合CDIO工程教育人才培养考核标准和传统实践教学环节的考核方法,建立了以个人能力、交流沟通能力、团队合作能力、创新能力等能力培养为目标,以工程构思、工程推理、工程设计、工程应用为主线的考核体系,采用自评、项目组互评、答辩等多元考核方式,考核体系见表2。基于CDIO的项目考核体系能有效地激励学生的学习主动性,合理地评价学生的学习效果,督促教师不断地完善实践教学内容,优化和提高教师的实践教学能力。
关键词:交通安全设施 交通标志 物联网技术 信息集成 传感器技术
中图分类号:TP273 文献标识码:A 文章编号:1007-9416(2015)03-0000-00
1 引言
交通标志是用图形、符号、文字、颜色像驾驶人及行人传递特定信息,用以管制、警告以及引导交通的安全设施。目前,交通标志显示内容单一,仅能显示一种固定信息,不能随时根据需要在同一块标志上转换,导致相应限制、提醒等信息得不到及时,给道路行车安全带来隐患等问题。而国内高等级公路上对于即时信息的主要采用LED显示屏的,虽然这种交通诱导屏有较好的警示效果,能够给驾驶人一个应急响应的提示,但是此显示屏需要铺设光纤电路,对于架设地点存在一定局限性,且LED显示屏造价高,经济性不佳。
本设计根据道路条件、当地的气候条件及道路安全情况,在特定路段设置相应传感器,通过无线传输将传感器检测的信息传送至智能标志牌的单片机控制系统,控制系统可利用事先建立的气候环境条件与车速的模型,计算出相应的限速值,系统通过控制LED灯的点亮与熄灭将相应的警示标志与限速标志反映在标志牌上,即时相应不利行车条件的提醒与限速信息。
2 智能交通标志设计概述
2.1 系统设计思路
本系统考虑根据当地气候条件及道路安全情况,在特定时间段在特定路段安装布设无线气象传感器(例如:温湿度传感器、风速风向传感器、降雨量传感器、能见度传感器等),把各个传感器实时检测的数据利用Zigbee无线模块传输,由智能标志牌的单片机控制系统接收分析,根据交管部门事先设定参数信息或者直接由单片机编入的公式程序输出相应路况提醒信息。一方面,传送给控制指示牌的单片机,由其控制标志牌上LED点阵,从而实现对交通指示牌的自动控制;另一方面,经自主网络Zigbee无线传输给PC上位机,存储并建立相应数据库,给交管部门对道路信息情况的管理、控制提供一个智能aa化的平台。
2.2 系统模块设计
2.2.1信息监测传感器模块
传感器是指能感受规定的被测量对象,并按照一定的规律转换成可用输出信号的器件或装置。在此控制系统中,采用性价比合理的气象传感器对不利天气进行实时监控,并将信息及时传送给单片机处理。与传统的人工检测相比,传感器具有检测精度高、范围广、样本容量大、成本低等优点。
2.2.2单片机及无线通信模块
集成度高且功能强大的单片机是智能交通标志的控制中心,其主要功能是将传感器所测得的各种电信号进行获取、处理,并计算出相应的工程量,按一定的格式存储。单片机能够测量多路由传感采集到的模拟信号,通过编程控制,对数据进行处理。将与标志牌牌逻辑关系对应的数据进行存储及传输,即智能控制。
单片机的输出数据可通过Zigbee网络进行自主传输。Zigbee技术是一种近距离、低复杂度、低功耗、低成本的双向无线通讯技术。为智能控制而建立的Zigbee网络,具有简单、使用方便、工作可靠的特点,主要用于距离短、功耗低且传输速率不高的各种电子设备之间进行数据传输以及典型的有周期性的数据、间歇性数据和低反应时间数据传输的应用。
JN5121是一款兼容IEEE802.15.4的低功耗、低成本无线微型控制器。该模块内置了32位的RISC处理器,配置有2.4GHZ频段的IEEE802.15.4标准的无线收发器。系统内部带有64KB的ROM和96KB的RAM,为无线传感网络提供了多种多样的解决方案,同时高集成度的设计简化了整个系统的开发成本。JN5121内置的ROM存储器集成了点对点通信与网状通信结构的完整协议;而内置的64KB的RAM存储器,可以支持网络路由和控制器功能而不需要外部扩展任何的存储空间。内置的硬件MAC地址和高度安全的AES加密算法加速器,减小了系统的功耗和处理器的负载。它还支持晶振休眠和系统节能功能,同时提供了大量的模拟和数字外设的相互操作支持,可以方便的连接到智能标志的外部应用系统。
2.2.3数据库模块
上位机是指可以直接发出操控命令的计算机,一般是PC,屏幕上可以显示各种信号变化。上位机接收到下位机传输的数据后,将数据存储于建立的数据库中,便于对数据的统计分析,日后对此道路标志牌的设置更加科学。
2.2.4布有LED点阵的标志牌部件
标志牌:按照《道路交通标志和标线》GB5768-2009规定的道路交通标志的分类、颜色、形状、字符、尺寸、图形等的要求设计、制作交通标志牌,粘贴反光膜。
LED点阵:对于警告标志和禁令标志分开合理设置LED点阵,根据标志牌的图案或字符特点选择合适孔径和孔间距,保证在特定环境条件下能清楚显示标志牌内容。
电源:DC12V,由太阳能电池供给。
3 基于物联网技术的智能标志应用前景
(1)拓展空间大:可以在温湿度传感器的基础上,安装降雨、降雪、横风等其他传感器,达到更为全面的交通警示效果,提高道路行驶安全性。也可以通过无线模块的信息传输,把传感器获得的路段信息与车联网结合,通过广播、短信等方式提前告知驾驶人。
(2)成本低:智能交通标志在一块标志牌上实现了多种指示功能,相当于设置了多个不同的交通标志,节约资源和成本;通过无线模块传输信息无需通讯费用,与传统LED显示屏相比造价低、经济性好。
(3)在地理条件复杂设置:智能交通标志和普通标志一样,无需布设通讯线路,因而都能在地理情况比较复杂的路段布置。而与普通LED蜗啾龋智能交通标志能实现针对道路情况进行实时反馈的功能,且更能适应复杂的地理条件。
(4)可在危险路段连续设置:智能交通标志可以在无线覆盖范围内(2―4km)进行连续布置,对道路情况进行实时、连续的提醒,尤其是在气候多变、路况复杂、道路设计采用极限值的区域,可使驾驶人对整个路段情况都有比较全面的把握,提高行车安全和行车效率。
(5)作为临时交通警示牌:在道路进行维修施工或道路局部出现突发状况时,可以临时设置智能交通标志牌,能在较远的距离进行预警,使车辆减速或者绕道行驶。
4 结语
基于物联网技术的智能标志牌实现高度集成化,将多种标志集合在一块标志板上,克服了传统交通标志指示信息单一,LED显示屏造价高等缺点。并且依托物联网技术,实现无线传输信息,利用Zigbee无线双向传输技术,无需布设线路,尤其在交通条件以及硬件设施条件受到限制的情况下有良好的应用前景。实现了数据采集、逻辑运算及信息全过程智能化,无需人工干预,避免了更换不能反映实时信息的标志牌的人工操作,智能可靠,节约人力。
参考文献
[1]交通部公路科学研究院.公路交通标志和标线设置手册[M].北京:人民交通出版社,2009.
[2]胡玉峰.自动气象站原理与测量方法[M].北京:气象出版社,2004.
[3]王汝林.物联网基础及应用(第一版)[M].北京:清华大学出版社,2011.
关键词:物联网; 智能交通系统; 数据通信; 数据处理
中图分类号:TP391 文献标识码:A 文章编号:2095-2163(2013)05-0043-04
0引言
智能交通系统(Intelligent Transportation Systems,简称ITS) 是指通过对交通基础设施和交通出行工具的全面的信息化、网络化和智能化来实现交通系统的性能提升,如增加交通安全性,减少交通时间和降低燃油耗费等等[1]。据统计,世界上每年都会有五千万人由于交通事故而受伤[2],而由于交通事故造成的经济损失则超过五亿美元[3]。 为此,智能交通系统将具有异常重要的实用价值,以及异常巨大的市场容量。有信息显示,其相关产业已然成为全球最大产业之一,已经而且也必将会对未来世界将产生深刻影响。 另一方面,智能交通系统也是一个融汇计算机、通信、信息处理、人工智能、自动控制等多个学科进行交叉的复杂系统,系统中存在大量具有相当难度的研究课题,所以对于学术界而言,智能交通系统的研究多年以来一直非常活跃,且颇受重视,成为热点研究领域。
智能交通系统的最终价值就体现在构建于其上的各类应用上,因此可以认为智能交通应用是智能交通系统的动力与源泉。 现在的智能交通应用大都集中在交通导航上,但是除了交通导航以外,还有很多与交通有关的应用可以用于提高道路安全,如道路预定,事故避免,未来交通流量的预测,道路拥塞的模式搜寻, 控制交通废气排放, 交通安全风险评估与避免等等。本文即针对物联网智能交通系统的研究现状进行了全面总结和深入剖析。
1智能交通系统中的环境感知
物理环境感知无疑是智能交通系统的基础,实际上对环境的感知与认知也是任何智能系统的基础。可分为以下几个专题进行系统阐述和分析。
1.1移动感知已经逐渐成为城市感知的基本手段
智能交通系统的监控传感器通常可分为两种基本类型:静态传感器和移动传感器(Mobile sensors)。由于移动传感器具有更大的灵活性,目前使用移动传感器进行交通环境感知的实例已有很多。例如,在上海和广州就分别使用带有GPS设备的出租车来收集交通环境信息(上海使用了4 000辆出租车,而广州使用了100辆出租车)[4,5]。 另外,使用带有GPS的公交车也可用来进行数据收集[6],文献[7]即使用安装在出租车上的探测器来监测核危险。 除上述手段外,通过智能手机来完成智能交通系统中的感知也是一种新出现的手段,文献[8]就利用了对移动 cellular网络的匿名监控对城市的实时移动性来实现监控。 再如,文献[9]给出的就是一种以车与车之间的通信协作为基础的路口安全实用方法,文献[10]给出的方法就是通过交通工具携带传感器完成环境感知以及通过车与车的直接通信作为网络基础的智能交通应用。
1.2降低感知的能耗,提高感知的精度
由于智能交通系统是一个关乎交通效率和人身安全的实践应用系统,所以感知精度的保障一直是一个重要的研究内容,同时由于智能交通系统的规模又非常庞大,节能也就成为其中的一个关键问题,因此在降低感知能耗的同时、又要保证感知精度就成为智能交通系统环境感知的一个难点挑战问题。 基于簇的结构是一种广泛应用于无线传感器网络中降低感知能耗的方法,但交通系统属于一个典型的动态系统,[JP2]节点不停地移动导致网络拓扑的动态变化,由此使得簇结构也需要跟着变化,所以在文献[11]中分析并给出了一个考虑节点移动的组簇算法进行数据收集,降低了感知能耗。
1.3智能交通系统环境感知研究现状的分析与总结
由上面的分析可以看出,移动感知已经逐渐成为智能交通系统环境感知的主体,而且这些感知节点往往是自身主动移动(即其移动是不可控制的)的节点,在增加了环境感知灵活程度,降低感知代价的同时,也使感知问题变得更复杂,因为选择哪些节点部署感知动作所导致的感知效果可能会截然不同。[JP2]一个显然的结论是在选择感知设备时,需充分考虑节点移动特征,尤其是一些重要社会特征,如那些移动活跃的用户和群体,或者移动性具有一定关联的用户和群体等等。
2智能交通系统中的数据通信网络
只有将采集获得的感知数据依托通信网络发送到需要的位置上,才能使智能交通系统真正得以运转,所以通信网络成为智能交通系统的另一个重要基础。总的来说感知和通信构成了智能交通系统的两大基础。
2.1智能交通系统中数据通信的基本结构
近年来,国外很多著名大学和企业都相继开展了城市感知项目的研究,当然其中的感知信息需要通过网络实现通信与共享。 如麻省理工大学开展的CarTel项目就是一个旨在基于机会通信建立延迟容忍的移动感知系统,建基于系统上的应用可以收集、处理、发送、分析、以及可视化由底层移动用户(如智能手机和车辆)采集感知的数据,并给用户推荐感兴趣的服务。 CarTel系统建基的网络可称为Cabernet[12-14], Cabernet采用的通信结构是建立IEEE 802.11协议基础之上,并主要集中在移动设备和WiFi AP之间的无线通信上,显然该结构是一种基本的集中物联的通信结构。
而MetroSense[15]是由Dartmouth大学开展的、由移动手机组成的、一个全局移动传感器网络,由此可实现整个社会范围内的超大规模感知,其感知网络可分成三层结构完成感知数据的收集。在有线Internet中的servers用于负责存储、处理感知数据;通过Internet连接的固定Sensor Access Points (SAP)可用来作为服务器和移动传感器(mobile sensors,简称MS)之间的gateways;而MS能在现场移动,用来收集数据,将数据“mule”到SAP处。另外,静态传感器也完成类似于MS的功能,只是SS不能移动。 由于感知数据的收集主体是随人移动的MS,MS位置的随机性,网络连通的间歇性都是经常发生的现象,这就决定了MetroSense只能提供机会性的感知。 不难发现,目前针对城市感知的通信网络都是以Internet为核心的一种集中物联结构。
2.2智能交通系统中常见的数据通信方式
移动无线通信环境采用的通信方式目前可见的已有许多种,基本方式可以分为如下四种:
(1)DSRC(Dedicated Short-Range Communication)[16]是一个工作在5.9 GHz波段的短到中距离的无线通信方式,对于车载网络,DSRC可支持的车速最高可达120mph,通信范围是300m,[JP2]缺省数据速率是6 Mbps,目前已有大量研究采用DSRC来建立车-车之间,车体-路边设施之间的实时信息通信。应用这些通信可以减少拥堵,提高人身安全等等[17]。
(2)Cellular networks,包括2G和3G,2G系统可以支持9.6 kbps的通信速率,GPRS和EDGE用来提高通信速率。相比而言3G提供的数据传输速率要大得多,其中的地理位置是引入带宽变化的重要因素[18]。
(3)WiMAX/802.16e的目的是提供最后一里(last mile)的无线宽带数据传输,常可用于取代cable和xDSL。 WiMAX用来填补3G和WLAN之间的通讯鸿沟,可以提供数十Mbps的带宽,
(4)WiFi或WLAN也能支持宽带无线服务,802.11a/g提供54Mbps的传输带宽,支持的通信范围是38 m (室内)、140 m(室外)。 由于WiFi的普适部署,使得WLAN成为一种极具吸引力的无线宽带传输手段。 同时,开放的WiFi mesh网络也引发了广泛的兴趣与关注[19]。
3智能交通系统中的数据处理技术
智能交通系统的智能化就集中体现在对系统内各种数据的处理上,所以对数据的处理可以认为是智能交通系统的核心所在。数据处理的详情如下所示。
3.1时空数据的处理
智能交通系统处理的数据是一种伴有时空特征的典型数据,由于现今的GPS装置已经非常成熟且实现了平民价格,所以大量配备有定位装置的设备广泛应用至各行各业,如带有GPS设备的为数众多的出租车、公共汽车以及一般的民用车辆,加上无线通信的日益成熟更使得现在的智能交通系统中产生了海量可以使用的、带有时空位置的序列化数据,如何应用和处理这些数据就成为智能交通系统时下研究中的一项基本内容。 如文献[20]使用的就是人工智能中的无导师学习方法来处理车辆产生的位置数据,用以推导得出车辆的状态和动作,从而实现对交通事故的避免。 除了对时空序列数据进行处理以外,发现和利用数据的空间特征也是智能交通系统时空数据处理的一项新兴研究内容,文献[21]给出的正是这样一项分析道路网络交通流量状态宏观角度空间特征的方法,而文献[22-24]中的研究也是针对交通流量的时间和空间依赖性完成的,智能交通系统可以应用这些空间特征进行各个方面,诸如VANETs通信等方面的性能优化。
3.2数据的在线分析
智能交通系统的高度动态性使得系统会产生大量数据,并且许多数据会因为环境的动态变化而随时失效,这就使得对于数据的在线分析变为一个复杂的问题[25],而文献[25]就使用一个简单的折价因子来为那些不断陈旧的历史信息建立数据模型。
3.3人工智能的数据处理
显而易知,智能交通系统中的数据处理必然要使用各类人工智能的最新技术。 近年来,人工智能中的一些新技术已经受到越来越多的智能交通研究者的推崇和青睐[26,27]。 例如,针对交通流量的预测和建模可以借助于人工神经网络、模糊推理系统以及一些聚类技术。 文献[25]中的风险评估就使用了一个经过修改的在线最近邻聚类算法,用以提取最有价值位置。 而使用模糊推理的原因则是由于交通系统的动态性和复杂性,并由此导致感知数据带有明显不确定性,因此就需要在推理时连带这些不确定性一同进行模糊推理。
4总结与展望
由上面的分析可以看出,移动感知已经逐渐成为智能交通系统环境感知的主体,而且这些感知节点往往是自身主动移动(即其移动是不可控制的)的节点,在增加了环境感知灵活程度,降低感知代价的同时,也使感知问题变得更加复杂。
[关键词]无线门铃;避障;单片机;nRF24L01;超声波测距;
中图分类号:TP277 文献标识码:A 文章编号:1009-914X(2017)02-0112-02
第一章 绪论
1.1 课题研究背景及意义
随着科技的发展,尤其是云计算、物联网的出现,智能家居的概念在各大媒体上频繁出现,进入大众的视野。在我国,智能家居的概念在十余年前引入,并推向市场。随着社会的发展、经济水平的提高,人们对家居质量的追求也越来越高,要求家居舒适化、安全化、智能化,对智能家居系统的渴求也越来越强烈,对智能家居系统功能多样性,便利性及特殊用途的要求也越来越高。其中,门铃系统作为智能家居系统必不可少的一部分,其研究与发展的重要性不言而喻[1]。
2010年第六次全国人口普查显示,我国60岁以上人口占13.26%,比2000年上升2.93个百分点,我国老龄化进程逐步加快。目前,中国已经成为世界上老年人口最多的国家,也是人口老龄化发展速度最快的国家之一。据联合国统计,到本世纪中期,中国将有近5亿人口超过60岁,而这个数字将超过美国人口总数。中国养老行业是关系到每一个人切身利益的现实问题,也引起了全社会的广泛关注。中国也逐渐成为全球老龄产业市场潜力最大的国家之一。此外,在我国,无论是城市还是农村,普遍存在着夫妻双方都工作而由老人单独在家照顾小孩的现象。因此,针对老年人的智能家居产品设计将成为科技创新的热门方向之一。
1.2 论文研究的主要内容和创新点
针对无线智能门铃及门铃提醒系统与视听障碍老年人群的人C交互特点,本论文主要研究智能门铃的无线控制系统及手持设备化提醒系统的方案设计,针对视听障碍老年人群的人机交互方案设计,室内行走避障报警系统等方面。
(1)无线控制系统及手持设备化提醒系统的方案设计
无线控制系统是无线传输技术与单片机控制技术的结合,其将门上发送端接收到的按键信号转化为无线信号,通过特定的无线网络传送给门铃接收端,这就使得门铃系统脱离了各种线缆的羁绊,降低布线成本,也为加入智能家居无线组网提供基础。
门铃提醒系统手持设备是在无线控制系统的基础上,对门铃提醒系统采用锂电池供电,缩小系统尺寸,实现手持设备化。手持设备的可移动特点会大大提高整个门铃系统的灵活性和便利性。
(2)针对视听障碍老年人群的人机交互方案设计
传统门铃系统来客提醒一般形式为电子铃声,语音对话或视频监控,而视听障碍人群一般不便于接收此类信息。因此本研究中门铃系统在保留原有固定式提醒形式外,增加了可移动手持设备上的来客振动提醒形式,更加直观地将信息呈现给视听障碍人群,实现完美的人机交互。
(3)室内行走避障报警系统的实现
考虑到视听障碍老年人群在接收到来客提醒后前去开门的过程中,会遇到室内桌椅等各种障碍物,而这会影响老年人行走的便利性及安全性。因此,本研究汲取了目前极为热门的汽车自动驾驶的概念,在门铃提醒系统手持设备上集成了实时障碍检测及报警系统,通过与来客振动提醒不同的振动形式来提醒用户注意前方障碍。
第二章 系统的总体设计
2.1 系统硬件平台的设计
本系统硬件平台的设计如图2-1所示,整个门铃系统分为门铃发送端和手持接收端,两部分都以STC12C5A60S2单片机最小系统板为控制核心。其中门铃发送端搭载门铃按键和无线发送模块、蜂鸣器,供电系统可以是市电或电池;手持接收端搭载无线接收模块、接收确认按键、直流振动电机、蜂鸣器、TFT(Thin Film Transisitor)液晶显示屏、超声波测距模块、障碍报警距离调节按键组等,供电系统采用可充电锂电池。
2.2 系统软件模块的设计
本系统软件部分主要分为无线传输模块、超声波测距报警模块、人机交互界面模块等。
无线传输模块实现两个2.4G射频收发模块nRF24L01之间的数据传输功能;
超声波测距报警模块包括超声波测距模块HC-SR04的触发与接收,回馈数据的处理,障碍报警距离的调节;
人机交互界面模块包括门铃按键和应答按键的检测及与无线信号的转换,提醒系统振动功能的控制,测距显示以及液晶屏上其他友好性界面设计。
第三章 超声波测距障碍物报警系统实现
3.1 超声波测距模块HC-SR04介绍
HC-SR04超声波测距模块可提供2cm-400cm的非接触式距离感测功能,测距精度可达高达3mm;模块包括超声波发射器、接收器与控制电路。模块共有4个引脚,VCC供5V电源,GND接地,TRIG触发控制信号输入,ECHO回响信号输出。
超声波测距模块基本工作原理:
(1)采用I/O口TRIG触发测距,给最少10us的高电平信号;
(2)模块自动发送8个40KHz的方波,自动检测是否有信号返回;
(3)有信号返回时,通过I/O口ECHO输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。测量距离=(高电平时间*声速(340m/s))/2。
3.2 障碍物报警距离设置
为了适应身体健康状况不同的老年人以及不同的家居环境,本研究设计了障碍物报警距离的用户设置功能。设置功能硬件电路实现如图3-1所示,
系统通过Adjust_Key选择进入或者退出用户设置模式,若M入用户设置模式,则由left和right按键选择障碍物报警距离(cm)的百位、十位、个位,再由up和down按键对选中位数的数值进行增减操作。系统将障碍物报警距离初始值设为50cm,用户在此基础上进行操作。
总结与展望
针对现实生活中视听障碍老年人群应答门铃障碍及室内行走安全问题,本文结合单片机控制技术、短距离无线网络技术和超声波测距技术,设计并实现了一种手持无线智能避障门铃系统,打破传统门铃提醒系统空间局限性,增加对老年人的安全性,给人们的生活带来便利,系统还额外集成了广场舞一键召集功能,该功能由一个主机和多个从机组成,主从机关系可设置,主机由舞团团长或召集人担任,其他团员为从机。当主机发送召集信息后,从机接收信息并由团员确认,从机将确认信息发送回主机。当老人出门时,手持设备可开启避障功能,实现了视听障碍老年人群参加健身和社交活动的便捷性,保障了老年人的身心健康。
参考文献
[1] 陈小波.移动互联门铃的研究与开发.广东工业大学,2015.
[2] 姚远.基于SIP的智能远程可视门铃系统的设计与实现.华南理工大学,2015.
[3] 康晶.基于nRF24L01的人体信息监控系统研究.北京邮电大学,2011.
[4] 韦积慧.基于nRF24L01的无线网络设计与实现.吉林大学,2012.