发布时间:2023-10-10 17:14:37
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇物联网技术和应用,期待它们能激发您的灵感。
中图分类号:TP391.44 文献标识码:A 文章编号:1674-7712 (2012) 16-0060-01
一、内涵和特征
(一)内涵。物联网通过使用各种信息传感设备,如射频识别(RFID)技术、全球定位系统(GPS)、激光扫描仪、红外感应器等,实时采集任何需要监控、连接、互动的物体或过程,采集其声、光、热、电、力学、化学、生物、位置等各种需要的信息,与互联网结合形成的一个巨大网络。其目的是实现物与物、物与人,所有的物品与网络的连接,方便识别、管理和控制。(二)特征。物联网本质上是一种建立在互联网上的泛在网络,虽然它的核心依然是互联网,但是它依然有着自己一些独立的特征。第一,它大量应用了各类感知技术。物联网信息的获取源就是分布在网络末端的各种类型的传感设备,这些传感设备就是物联网的“耳”、“眼”、“鼻”。第二,物联网中的“物”通过各种有线或无线通信方式连接到互联网上,从而实现信息的上传或指令的下发,进而达到和互联网的融合。第三,物联网不仅通过传感设备交换各类信息,其本身对信息也具有处理的能力,通过这种能力可以实现对物体的智能控制。
因此,物联网技术其实就是互联网技术、传感器技术和智能处理技术(模式识别、人工智能、云计算等)的结合。
二、物联网的关键技术
M2M技术、传感网技术及射频识别(RFID)技术、网络通信技术是物联网的关键技术。
(一)M2M技术。M2M技术通过实现机器与机器、人与人、人与机器之间的通信,与操作者共享了使机器设备、应用处理过程与后天信息系统提供的信息。M2M技术提供了传输数据的优良手段,使设备能够实时地在系统之间、远程设备之间、或个人之间建立无线连接成为可能。
M2M产品主要由三个部分构成:1.行业应用中心:对分散的行业终端进行监控,是终端上传数据的会聚点;2.无线终端:不是笔记本电脑或手机,而是特殊的行业应用终端;3.传输通道:从用户端到无线终端的行业应用中心之间的通道。
当今,随着科技的不断进步,M2M产业链中的各个技术环节发展异常迅猛。不断增加的M2M的末端设备连接对象,其数量将会超过计算机和人的数量。在软件管理平台方面,通过M2M管理软件,可以实现对资产与末端设备的有效管理、控制。在物联网的硬件制造方面,使机器具有联网或通信能力的部件是M2M硬件,M2M硬件可以进行信息的提取,也可以从机器设备中获取数据,并传输到通信网络硬件厂商,不同应用、不同环境的移动信息处理可以通过不同的无线M2M硬件产品得以实现。(二)传感网技术。大规模无线传感网络技术、传感器及其智能处理技术的结合便是传感网技术。由于是一种检测装置,传感器能够感受到被测量的信息,并能将检测到的信息,按一定变换规律变换成电信号或其他所需形式的信息输出,以满足信息的存储、传输、显示、记录、处理等要求。实现自动控制与自动检测的首要环节是传感器,在实际应用中,传感器相当于人的“感觉器官。”新型技术的低能耗、小型化、可移动、低成本有点可以满足物联网的“物-物”相联需要,无线传感网能够在满足上述需要的前提下,提供具有自动修复功能和自动组网的网状网络,使无线网络具有初步的智慧功能。伴随着新技术革命的到来,全球已进入全新的信息化时代。在实际应用时,首先应解决的是如何获取准确可信的信息的问题,而在利用信息的过程中,传感器具有非常突出的地位,这是由于传感器是获取生产和自然领域中信息的手段和主要途径。(三)射频识别(RFID)技术。通常,当特定的信息读写器通过带有电子标签的物品时,读写器激活标签,并向读写器及信息处理系统传送标签中的信息,从而完成信息的自动采集工作。一个典型的RFID系统是由读写器、RFID电子标签及信息处理系统组成的。信息处理系统根据需求承担相应的信息处理及控制工作。由于每个RFID标签都有一个唯一的识别码,如果它的数据格式有很多是互不兼容的,在闭环情况下,对企业的影响不是很大。(四)网络通信技术。物联网数据是通过传感器的网络通信技术来提供传送通道的。目前,物联网研究的重点是如何在现有网络上进行增强,适应物联网业务需求。网络通信技术可以分为两类:广域网络通信技术及近距离通信技术。在广域网络通信上,卫星通信技术、2G/3G移动通信技术等实现了信息的远程传输,可以为每个传感器分配IP地址创造可能性,也可以为传感器的发展创造良好的基础网络条件。在近距离通信方面,802.15.4规范是IEEE制定的用于低速近距离通信的媒体介入控制层和物理层规范,以IEEE802.15.4为代表的近距离通信技术是目前的主流技术,工作在工业科学医疗频段,免许可证的2.4GhzISM频段全世界均可使用。
三、发展趋势
物联网前景非常广阔,它将极大地改变我们目前的生活方式。首先,物联网的应用可以提高经济效益,节约成本;其次,物联网的发展可以带动很多相关行业的发展,可以为全球经济的可持续提供动力;还有,物联网的应用可以大大方便我们的生活。在物联网的世界里,每个物体都具有了一定的智能,可以自动完成一些以往需要人类干预才能完成的事情。物联网虽好,但是要建立一个真正高效实用的物联网,有两个因素必不可少。首先是规模性,就是说接入网络的物体必须达到一定的规模,只有具备了规模,智能作用才能真正发挥出来。例如,某个城市的道路上有上百万辆汽车,如果我们只把其中的一万辆汽车接入到网络中,就不能对整个城市的交通有全面的了解,也不可能建立一个智能交通系统;其次是流动性,物体通常处在运动中,要能保证物体在运动状态,甚至是高速运动状态下都能随时进行数据的交换,这就需要建立配套的信息高速公路,尤其是大容量移动互联通道。
四、结束语
物联网是计算机科学技术的又一次全新的应用。当前,物联网的发展风起云涌,被誉为“下一个IT时代的产业革命”。不难预见:物联网将来必将改变世界。物联网的发展是信息社会发展的必然产物,但其在发展道路上,也将会面临着较多困难,有技术上,也有标准上的困难,这就需要社会各个层面在物联网业务及技术上取得相应突破。
参考文献:
[1]周伟.浅谈物联网及其技术应用[J].电脑知识与技术,2011,8.
关键词:云计算;物联网;ZigBee
DOI:10.16640/ki.37-1222/t.2016.13.130
1 引言
随着互联网技术的发展,物联网技术正在改变着我们的生活。在高校的设备管理中,针对高校设备种类繁多,设备情况复杂,设备使用频率高的特点,利用通常的手工管理和维护的方式,很难保证良好的教学秩序和教学质量,而将物联网技术引入到高校的设备管理中,可以对设备的情况进行实时的监控,既可以随时了解设备的状态也可根据设备状态判断设备故障情况。这样可以有效的调用设备,使设备得到充分的利用,从而保证学校各项工作顺利进行。
将物联网技术引入到高校的设备管理和维护中,并结合互联网技术将把设备管理和维护的工作推向一个信息化管理的新时代。
2 相关技术
2.1 物联网技术
物联网技术是通过信息传感设备,把物品与互联网连接在一起从而进行信息通信。即通过射频识别,红外感应器,定位系统等来实现智能化识别、定位、跟踪、监控和管理。物联网的系统结构分为三层:感知层、网络层和应用层[1]。
2.2 Zigbee技术
ZigBee技术是依赖于网络传输的短距离无线传感器技术,其核心技术包括跳频技术和扩频技术两种。ZigBee技术不适用于大范围内的通信,但对于功耗低,体积小的通信环境却是最佳的选择[2]。
3 设备管理和维护系统设计
设备管理和维护系统设计以物联网的系统结构为基础,分为感知层、网络层和应用层。在感知层建立zigbee传感器,用来采集设备的数据,并将数据统一到检测端计算机 ,管理端计算机通过网络接收检测到的数据,相应的数据会存储到对应设备的数据库。最后,对数据库中的数据进行分析处理,做出故障种类和故障位置的预测。设备管理和维护系统总体框架如图1所示。
3.1 感知层设计
感知层的设计采用zigbee传感器网络,感知层位于整个设备管理与维护系统的最底层,用来获取检测设备的状态以及对设备状态的控制。Zigbee传感器通常分为电源类传感器、门禁类传感器、环境类传感器以及控制类设备等。其中,由电源类传感器传送设备的电压、电流、功率等状态,环境类传递温度、湿度烟气等,由控制类设备发出指令进行断电或报警。
3.2 网络层设计
系统对网络层的设计依托于互联网,通过互联网可以对设备进行远程管理,管理端计算机与设备可以进行远距离数据传输,实现一对多的管理模式,直接由系统的响应速度所决定。在系统的网关设计上采用串口的模式,接收网络数据、控制信息以及网络状态等信息。
3.3 应用层设计
整个应用系统分为三部分:设备状态的实时监测、设备故障预诊、设备调用控制。
状态检测模块设计:在状态检测模块的设计上,同过zigbee传感器实时检测设备的状态,传感器获取电压、电流、温度、湿度、灯光 、烟气等数据[3],再将数据传送到检测端计算机,再对检测到的数据进行分析处理, 从而判断设备的工作状态是否正常。故障预测模块设计:本系统设计的故障诊断模块是对系统的整个工作周期的状态进行检测,并将检测结果作为设备故障诊断的依据,通过分析处理得到的数据从而确定检测设备故障的类型和设备故障的位置。通过对设备整个工作周期及不同设备的检测可以避免旧的检测模式只针对某一个设备的某段时间的检测数据的片面性。设备调控模块设计:根据数据库中综合数据进行调控。根据设备使用状况以及设备故障的情况,从整个系统中调用空闲的设备,使设备得以充分的利用。
4 结论
本文提出将物联网技术引入到设备管理和维护中,并将zigbee传感器技术应用于感知层。将物联网技术引入到高校的设备管理和维护中,可有效的 解决高校设备管理混乱,设备利用率低,以及设备故障诊断的延误。可以通过对设备状态的检测,对设备进行预诊,从而更好的对设备进行调控管理。
参考文献:
[1]刘杰,杨久波.物联网技术在煤矿设备管理与维护中的应用[J].山东煤炭科技.
[2]ZigBee - 维基百科,自由的百科全书.互联网数据.
关键词:社区安防;物联网技术;安防领域
中图分类号:TP277 文献标识码:A 文章编号:1007-9599 (2012) 16-0000-02
1 前言
物联网已成为当前世界新一轮经济和科技发展的战略制高点之一,发展物联网对于促进经济发展和社会进步具有重要的现实意义,物联网技术为推动国家信息产业从大到强,实现自主创新提供了新的发展机遇。通过全面推广物联网技术,可以实现道路和车辆的安全、便捷、快速的交通;可以通过公共卫生物联网来实现人民群众在家诊断疾病和居家养老的需要;通过将城市公共安全体系与社区安防物联网相互连接,可以实现社区公共安全物联网的全面覆盖。这样一来,我们可以看出物联网技术正在全面改善人们的工作、学习和生活。本文就物联网技术的发展和在安防领域的应用研究进行探讨。
2 物联网技术的发展
物联网技术包括了应用层、网络层、对象层和感知层四个层次,是在Internet技术的基础之上,采用无线数据通信技术、RFID技术来构造了一个可以覆盖各种食物的 “Internet of Things”。物联网技术给人民的生活带来了很大的改变,所有物品都可以利用激光扫描器、全球定位系统、红外感应器、射频识别(RFID)等信息传感设备来和互联网联系起来,在生产环节采用电子产品代码(EPC)技术能够快速地从品类繁多的库存中准确、快速地锁定所需的零部件和原材料,在自动化生产线运作的过程中有效实现跟踪和识别零部件、产成品、半成品、原材料,从而提高生产的效益和效率,减少人工出错率和识别成本。物联网在产品运输环节能够通过在运输路线设置安装RFID接收转发装置,同时对在途车辆和货物贴上电子产品代码(EPC),这样一来,就可以使得经销商和供应商能够通过物联网实时掌握货物预计到达时间,所处的状态和位置,在掌握好这些信息之后,就能够大幅度提高车辆利用率,合理调度车辆,减少运输成本,提高运输的安全性。
在安防领域,物联网技术的信息安全极为重要,原因在于一旦信息传输出现篡改、泄密和失效,那么必然会给将整个安防系统带来严重的后果,那么应该进行及时的预防和处理,处理技术有安全数据接入技术、入侵检测技术、安全路由技术、密钥管理技术等,而解决的关键就在于要从多个层面来解决安全漏洞,加强信息安全防范。物联网信息安全的重点在于网络层的安全技术,这是因为有线通讯存在光缆转换复杂、敷设线缆困难等问题,无线通讯存在病毒入侵、信号截取、强信号压制等问题,所以应该结合具体的使用情况,来选择是采用无线通讯,还是采用有线通讯。如果采用线通讯,那么应该最大程度地提高无线网络的安全性,克服拓扑结构和信道节点的缺陷。感知层要解决的问题就是前端传感器的可靠性和可使用性,有效地提升选用优质器材的水平。而应用层的安全技术能够通过安全数据和安全路由来修复、检测数据,再通过高性能计算机将有害数据剔除掉,将信息流有效地梳理。
总之,物联网技术能够在无需人干预的前提下,有效地实现物品与物品之间的“交流”,实现智能化管理、监控、跟踪、定位、识别,进行及时的信息通讯和数据交换。
目前来看,我国的物联网技术还处于一个发展的初始期,因此在物联网技术推进的过程中,应该将物联网应用于重点领域和重点行业,优先选择关联性高、带动作用强的重点领域进行示范试点,重点推进物联网技术在公共安全、节能环保、交通运输、电网、物流、农业、工业、医疗等领域的应用。
3 物联网技术在安防中的应用
目前我国对于物联网技术正在处于一个发展和探索,已经建立了一系列的专门研发机构,如物联网研发中心、传感网研发中心等,在健康监测、智能交通、公共卫生、智能家居、环境监控、工业安全生产、城市公共安全等领域进行了相应的尝试,物联网技术在未来正在朝着更加广阔的领域扩展。
物联网技术在安防中的应用,最为重要的技术就是视频感知技术,我国安防行业企业在近三十年的时间内一直都把研发重点发在视频监控技术。
例如,2010年在上海举办的世博会就成功地将物联网技术应用于园区的安防工作中。无论参观者在哪个场馆,或者哪个公共设施都会无时无刻不感受到物联网技术带来的便利。
物联网技术,尤其是视频智能感知技术大量应用于安全防护领域,为未来在智能交通、环境监控、城市管理、国家安全等领域应用物联网技术打下了一个极为良好的基础平台,具有极为重要的意义。
4 社区安防中应用物联网技术
物联网时代的社区安防就是采用网络传输、智能图像分析、传感器、RFID等多种信息技术,有效地将移动电话、网络摄像头、警报器、照明设备和互联网连接起来,建设能够具有实时监控管理的家庭安防综合应用系统、社区智能视频分析系统、社区车辆出入口管理系统、智能对讲门禁、社区周界防护系统等,同时还实现公安信息平台与社区安防信息进行对接。
社区安防管理系统主要由多种模块组成,如车辆出入管理系统、小区信息系统、小区智能视频监控、周界红外报警系统等。家居智能化管理主要由室内安防预警、远程监控、远程控制、无线可视对讲、家电智能控制、灯光智能控制等模块组成。该方案借助于警方、物业、业主三者间的快速响应,具有主动威胁告警和自动感知威胁的双重功能,能够在最大程度上使得事故损失减少。简易系统架构图如图1所示。
该系统的建设是以可靠、先进、适用、经济、成熟的物联网技术作为基础,同时与公安信息平台有效对接、紧密结合,依托现有的监控中心管理系统和信息网络系统,合理配置资源,充分考虑了拟建系统和已建系统在业务流程、数据结构、应用功能上的高度统一,采用的体系结构具有智能化、模块化、开放性,整个系统运行和管理具有协调、高效、科学的特点,构筑出了保障可靠、处置快捷、操作方便、反应灵敏、控制有力、防范有效、指挥高效的防控体系,有效地实现了“自动报警、信息共享、快速响应、联网布控、实时监控”的社区安防目标。
参考文献:
[1]李旸,李芬萍.“物联网”对商业银行供应链金融产品的几点影响[J].西部金融,2010,(05):147-149
[2]梁国伟,李长武,李文军.网络化智能传感技术发展浅析[J].微计算机信息.2004。21(05):123-126
[3]陈莉.计算机网络安全与防火墙技术研究[J]. 中国科技信息 , 2005,(23):106-109.
[4]W.Du et al.A Witness-based Approach for Data FusionAssurance in Wireless Sensor Networks.GLOBECOM.2003:129-134.
关键词:物联网技术;军事智能化指挥;训练领域
当前,美国等西方国家对物联网做了大量的研究,物联网技术涉及军事训练与指挥、后勤保障、故障诊断等应用领域,关系到识别与感知技术、智能处理、通信等技术。文章主要从指挥和训练领域出发,系统分析物联网技术在军事领域的应用。
1 战场感知
战场感知是指挥员对战场空间内对敌我双方、武器装备、战场环境的动态掌握。权衡战场感知的三个因素主要是信息获取、精确信息控制、一致性战场空间的认知。信息获取主要指的是全面、综合、准确地获取敌我双方状态、意图等信息要素;精确信息控制指依托网络控制和集成指挥、计算、情报、通信、监视与侦查各种资源控制能力;一致性战场感知指指挥员对敌我和环境理解的水平和速度,保持自身与己方部队对战场态势理解的一致性能力。基于此,战场感知除了传统的侦查、监视外,还包括对各种数据的管理和控制。
当前,智能传感器作为一门现代综合技术,是一种配备微型处理器,具有信息检测、信息处理、信息记忆、逻辑思维判断的传感器,它具有以下功能和优势。一是自校零、自标定、自校正的功能。二是自动补偿的。三是自动采集、处理数据。四是自动进行检验、自寻故障。五是双向通信,标准化数字输出。六是判断和决策。
随着灵巧传感器网络(SSW)在越战中的广泛应用,战场传感器网络成为现代信息战的灵魂。战场传感器实际上是在战场中布置一定数目的传感器以收集、传输信息,然后把这些信息发送至数据中心,建立信息平台,进行信息融合以实现战场信息全景图。当指挥员提出需求时可随时提供访问机制,建立快速访问的信息通道。同时SSW作为一个军事工具可向指挥员提供一个动态更新的数据库,并及时向相关作战人员提供实时战场信息,包括地面车辆、无人驾驶飞机、遥感地图、多重频谱图形等信息。这些信息由于存储格式各异,需根据制定相应标准和规范传感器内容,并通过相关技术实现信息的有效整合,达到感知战场实时信息的目的,实现指挥员统揽全局的作用。
2 目标跟踪与定位
目标的跟踪与定位从本质上来说是对目标状态的实时跟踪问题。根据从传感器上获取目标测量数据,选择合适的算法对目标进行定位并辅助指挥员理解战场态势,但必须说明的是军事指挥领域目标定位、跟踪必须精确可靠。
当前基于GPS的目标跟踪与定位发挥了重要作用,它可全天候、连续、实时、高精度地提供位置、速度以及时间等信息,因此利用GPS定位数据可以实现对运动目标的跟踪。以海上舰船为例,利用GPS的目标和定位可分为以下几个步骤:一是建立目标模型。GPS动态测量载体的位置,并结合一定的手段获得海上舰船的目标机动状态参数,采用一定的模型算法获得目标的相对位置,然后将数据转发给地面监控站;二是地面跟踪系统架构。由于导航信号易遭受高大建筑物的干扰,在实际应用中,通常是将GSM和GPS相结合,根据GSM数字蜂窝通信网的高速率数据通信、系统容量大、标准化程度高等特点,提高了GPS系统的可靠性和实时性,使系统具有较大的容量;三是电子地图显示系统,为了便于指挥员现场分析和规划航线,以拥有的所属区域电子地图为蓝本,建立实用的电子地图显示系统。系统根据GPS实时解算当前距离出发点的距离和方位,然后将地理坐标转换到电子地图上,并通过显示装置绘制和显示舰船的航迹,从而达到指挥员对舰船监控的目的。此外,电子地图显示系统还具备轨迹回放的功能,这便于指挥员在智能化领域的指挥和训练。四是数字罗盘指示系统。系统将实时接收舰船当前的GPS位置信息,实时解算舰船和相对点之间的角度,同时在屏幕上实时刷新罗盘指针的位置和角度值,船上指挥人员可参考该方向及时调整航向,便于按照计划开展各项训练。
3 战场态势评估
战场态势是指战场中各方兵力分布及战场环境的当前状态和发展趋势。不同的战场态势包括不同的态势要素,因此态势要素不确定的发展变化是战场态势评估的主要内容。战场态势评估主要是根据目标实时数据与有关情况,对战场上的状态和形式进行的评价与估计。其评价的结果经过指挥人员分析、判断、决策后,为下一步的指挥决策提供依据。因此战场态势评估是指挥人员掌握战场环境、认识战场形式的重要技术手段。
当前战场态势评估主要分为以下几个步骤:一是战场态势的信息感知。从本质上来说就是利用各型传感器,对目标可能发出的无线电波、雷达波、气味、音响造成的信息进行探测,同时对战场数据进行有效管理,以获取战场态势评估要素所需求的最优质,并获得对传感器数据的有效融合,实现高效的态势评估。二是敌情的侦查和监视。伊拉克战争中,美军利用其信息优势,采取空中、地面多种侦查手段综合运用,实现了实时高效的侦查与监视,不仅构建了空间、高空侦查监视网,实施全程监控,如各种空中侦查飞机配合使用,其作战任务涵盖了高中低各领域,还构建了信息采集网络。通过前线的传感器、太空卫星群实时地将各种情报数据传输给情报处理中心,经过融合后将这些情报信息和图像画面实时地显示在指挥中心显示屏上,从而实现战场的信息共享。
4 集约的战场指挥系统
实现集约的战场指挥的关键是一个具有覆盖全部战场空间,能够实现指挥信息实时共享、实时传递数据的网络,该网络使作战指挥各要素融为一体,从而实现集约的战场指挥。因此,集约的战场指挥系统,主要是指挥实体为了达到对作战单元在多维战场的侦查、打击、支援和保障所进行的一些列指挥和控制的目的,在战场构建对全战场信息实时获取、互通和共享功能的集约性质的战场指挥系统。
借助职能传感器和物联网技术,可以更好地实现与现有基础设施的有机融合,扩展军事网络的应用性,推动战场有关的通信、侦查、控制、机动、火力的综合集成,将各型装备与平为一体的网络系统,从而拓展指挥员获取信息的速度和质量,实时获取所需情报,准确研判战场态势,做出科学决策,并可通过集约的战场指挥系统将指令传递给各作战单元,使军事指挥更加灵活和高效。
美军在伊拉克战场中,依托高度发达的集约战场指挥系统C4ISR将侦查、监视、决策和指挥控制融为一体,实现了侦查判断决策指挥控制的高效融合,实现了发现即摧毁的目标,将打击过程近乎实时化。美军各型参战飞机都安装了图像系统并和目标数据库进行比对,实时接收与修正数据,在特种作战人员装备中使用了“漫步者”软件,从而使美军从卫星、侦察机和其他手段获取的信息实时地传递到各部队。每一飞行员可随时了解到战场变化,对打击目标进行随时的修订和更新。
参考文献
云计算和物联网技术
云计算是一种通过互联网,以服务的方式提供动态可伸缩的虚拟化资源的计算模式,它将计算任务分布在大量依靠网络连接起来的硬件平台上,使用户能够按需获取计算能力、存储空间和信息服务,并实施多种应用。
物联网是通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物体与互联网相连接,进行信息交换和通信,以实现对物体的智能化识别、定位、跟踪、监控和管理的一种网络。
由此可以看出,云计算和物联网技术之间拥有着一种紧密联系、互相促进的关系。一方面,物联网的发展离不开云计算强大的运算作为技术支撑。从量上看,物联网将使用数量惊人的传感器,如RFID、视频监控等,采集到超大规模的数据。这些数据需要通过各种渠道向某些存储和处理设施汇聚,而使用云计算技术来完成这些巨量任务,具有十分显著的计算容量优势。从质上看,使用云计算设施对这些数据进行分析、处理与转换,可以更加迅速、准确、智慧地对物理世界进行管理和控制,使人们可以更加及时、精准地管理物质世界,从而达到“智能”的状态,大幅提高资源利用率。由此可以看出,云计算凭借其强大的处理能力、存储能力和极高的性价比,自然而然成为物联网强大的后台技术支撑平台。另一方面,物联网将成为云计算最大的用户,将为云计算取得更大商业成功奠定基石。
“实验动物学”教学中存在的问题
1.“实验动物学“内容多样,教学手段更新不足
由于“实验动物学”在我国是一门较新的学科,所以各有关院校“实验动物学”课程的开设情况存在着诸多问题。例如,教学内容多种多样、教学手段及方法相对陈旧、学时参差不齐、实验课内容及质量不尽如人意等,其教学质量的现状令人担忧。在这样的情况下,学生进行有关动物实验时便会出现实验动物学的基本知识不足及操作技能欠缺等问题。
2.网络教学应用程度差,学生对于授课内容不感兴趣
随着粉笔加黑板的老式手写板书的教学模式逐渐被大屏幕多媒体教学系统所取代,课堂教学可以变得有声有色。但在互联网飞速发展的今天,广大学生对于多媒体的理论教学,更加期待运用先进的方法和技术手段学习到更新、更前沿的知识和更先进的技术。但实际情况是,很多院校在教授“实验动物学”课程时,只是用演示文稿(PPT等)取代了手写板书,其主要内容和教学手段并无太大变化。对于这些在书本上就能看到的传统知识,并不能激发广大学生的学习热情,因此这种教学模式显然是需要改进的。
条件较好一些的院校,会利用自建的校内网络平台一些课程教学内容,但这些资料外校学生往往无法得到,对于通过互联网获取本学科的前沿资料,实时传输给学生的教学模式并没有在相关院校教学活动中得到普及。
3.实践教学环节比较薄弱,动手能力训练欠缺
“实验动物学”是对实践技能要求较高的一门学科,然而部分院校的实践教学环节还比较薄弱。其主要原因为:一是场地设备问题。由于标准化的实验动物设施建设的投入很大,日常运行维护费用较高,还要有专门的管理人员,且单个实验动物设施很难同时饲养多种实验动物。这样使得一些院校宁肯从其他地方购买实验动物用于相关学科实验,也不愿意自己建设和使用实验动物设施开展相关实验动物的教学实验活动。这样,学生很难直观了解到实验动物设施的运转模式,更谈不上参与到实验动物设施的日常工作中。二是实验材料价格问题。由于标准化的实验动物及其饲料等价格的不断上涨,使得实践教学成本增高,因此“实验动物学”实验教学质量和数量大打折扣。三是安全问题。由于操作不规范或使用不标准的实验动物,学生在操作过程中存在着可能受伤或患病的安全隐患。
云计算和物联网技术在“实验动物学”中的应用探讨
目前,中国实验动物学会和北京、广东、湖北、江苏、吉林、上海、福建等地都已经建立了各自的实验动物信息网络,用于本地区实验动物行业的信息和政策引导等服务,同时多数网络都设置了教育培训专栏。这就为更大规模的网络技术应用于“实验动物学”课程教学奠定了初步基础。为了实现资源的最大共享化,我们可以利用云计算技术,把各种信息网资源整合起来,建设一个统一的公用第三方云端平台,既免去了各单位自身服务器的维护投入和使用的局限性,又能方便第三方操作平台统一整合运用与保护所有资源,便于管理。这样,无论是更新客户端,还是新的信息等,由于有了统一的第三方管理平台,这些设置均可以随时补充和更新,并能立即生效。包括学习“实验动物学”课程的学生在内的所有使用实验动物学资源的用户,均可以使用自己的用户名和密码登入该资源库,查找自己所需的信息。这样就达到了资源利用最大共享化的目的。
由于所有资源全部由第三方平台管理,所以以往需要专业计算机人才维护的服务器等设备可以直接移除。一些没有计算机专业知识的人依然可以轻松完成复杂数据的处理,因为这些任务已经交由强大的云端帮你完成了。由于云计算技术对终端硬件配置要求不高,只要有网络的地方,无论是使用手机,还是上网本、台式机,均可随时随地连上云端,新的信息资料,使用各种资源,极大程度地方便“实验动物学”的教学、实训等活动的开展。
物联网技术也可以进一步地应用于“实验动物学”的课程教学活动。例如,利用视频监控系统,可将实验动物中心的各个监控探头纳入各自统一的平台管理系统。这些实时的监控影像资料,可以上传到云端备份保存,不用再保存在自己的物理硬盘中。这样,资料可以随时调取使用,所有线上用户均可以共享这些资源,用作视频教学的范例。基于此项优点,我们可以甄选出规范化实验动物操作技术,借助云计算和物联网技术推向全国,进而建立起视频化的实验动物学实验操作标准作业程序(SOP)。
物联网的另一个应用范例便是芯片识别技术。可将每只实验动物的身上植入微型芯片,这些芯片本身就含有该动物的基本信息。每当想要查找该动物的基本信息时,只需扫描该芯片,基本信息便一目了然。当然,智能芯片的功能不止这一点,它除了具备储存信息的功能外,也能作为小型传感器和发射机。即无论动物在哪,我们都可以清楚地定位到它的准确位置;无论动物发生何种异常状况,我们都可以实时监测到。这样再通过信息采集系统,就能够大大节省人力,我们不用再时时刻刻面对面观察动物。这些信息也可以直接存储于云端,方便随时调用,使得学生在学校学习阶段就能实际接触到云计算和物联网技术在实验动物领域中的应用,并能切身感受到这些新技术应用于教学所带给我们的好处。
基于实验动物设施需要投入较大资金,而“实验动物学”课程的教学绝对不应该脱离动手能力训练这一共识。应用云计算和物联网技术可以在一定程度上解决这一问题。如上所述,利用现代视频技术,在视觉上已经能直观地观察到实验动物设施以及各种实验动物状态。在实际操作中,应用于物联网技术及远程遥控技术,我们可以做到相隔千里亦能控制远方的机械手,使我们在异地完成一系列的实验操作。这样的控制系统,在医学手术中已得到广泛的尝试。