发布时间:2023-10-10 17:14:19
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇工业应用机电设备,期待它们能激发您的灵感。
信息技术的发展以及先进电子设备的产生催生了机电一体化时代的到来,所谓的机电一体化技术是把电工电子技术、机械技术、信息技术、微电子技术、接口技术、传感器技术、信号变换技术等一系列技术结合,再综合应用于实际的综合技术,现代化自动生产设备可以说为机电一体化的设备。微型计算机在机电一体化系统的作用能够总结成如下三点:第一,直接控制机械工业生产过程;第二,机械工业生产期间加强各物理参数的自动测试,进行测试结果的显示记录,在计算、存储、分析判定并处理测量参数或指标;第三,进行机械生产过程的管理与监督。机电一体化系统里微电子控制机电设备怎样进行适宜计算机选择,怎样设计硬件系统,怎样组织软件开发,怎样对现有计算机系统等进行维护与使用是相当关键的,也是值得探索的
课题。
1微电子控制机电设备系统的组成和原理
在某微电子控制机电系统当中,主要是由PLC、管路压力变送器、变频器等多种设备组成的。在控制系统当中,管路压力变送器主要是检测控制辅助冲量、管路水压、蒸发量等三个变量,接着将数据信号向PLC当中传送,并且通过PLC进行分析和计算,将信号发送信号控制器,通过信号控制器来控制水泵运转,在设计系统的過程中需要与实际情况合理的进行结合,并且对变频器的输出频率进行确认,输出频率在整个系统设计过程中具有非常重要的意义,和系统的控制息息相关,在确定系统输出频率是需要综合性的分析和考虑用水量以及扬程参数等。在整个系统当中控制流程的用水量变化,主要是通过压力变送器向PLC传送的通过PLC进行分析和计算,可以有效的调节循环泵的频率,合理的分配能源,让工作的效率提高,起到节约资源的
作用。
2微电子控制机电设备在工业中的具体应用
1)可编程序控制器(PLC)的应用。从PLC的角度进行分析,其主要优势在于具有很强的控制能力,而且稳定性较高,机身体积相对较小,可以有效的和其他的配件进行组合。在工业生产的过程中,因为机电设备往往会占据一定的面积,如果想让其厂房中的占比较高,就一定要注意让厂房的空余面积加大,尽量让控制器的数量减少,让机电设备的数量增多,与此同时还需要注意PLC的节能性较高相比,其他的控制系统可以节约资源,让工业生产的成本支出降低,让企业的经济效益增加,由于PLC设备可以有效的和其他设备之间进行组合,可以灵活方便的在厂房当中进行布设,让一机多用。可以实现让厂房的设备结构进一步得到简化,对设备维护中耗费的人力物力进行控制,减少人力输出,可以将人力有效的分配到工业生产当中,让生产资料的利用效率提高。PLC的另一大优势在于可以通过现场总线和生产设备之间
进行连接,有效的监控工业生产,可以动态化的监控生产的全过程,确保在生产过程中,第一时间解决生产时产生的故障,避免由于机械故障而导致生产进度停滞,让设备的维护开支得到控制,PLC的计算速度很快,可以轻松的对生产时的任何变动进行管理和控制,有效的防止由于设备变化控制器无法及时应对而产生的问题,PLC还可以进行相关的升级,伴随当前经济快速发展,就算生产线当中的产品产生了变动,只需要正确的调整,控制程序也可以符合新产品生产的具体需求。
相比于其他编程操作,PLC控制器在编程的过程中较为方便,员工通过短时间的训练就可以熟练的掌握编程的技巧,在实际操作的过程中工作步骤相对较为简单,可以很容易的掌握设备的维修安装以及操作,由于PLC自带程序编辑器只需要工作人员了解梯形语言,就可以对其进行熟练的掌握。对控制器的工作语言进行了解,当出现故障的时候可以及时的调整和处理控制器。
2)变频器调速器的作用。变频器工作状态分作自动与手动两类,手动工作状态即在PLC结束工作后展开的人工操作行为,经电位器调节能对变频器输出频率进行给定。自动工作状态实质是PLC输出信号为变频器输出频率展开控制。和传统调节阀控制方式相比,PLC控制可节电,更好进行水泵磨损控制,在延长设备寿命与实现系统自动化水平提升中发挥了重要作用。
第一,和传统正弦波控制技术相比,因变频器用到了电压空间矢量控制技术,先进性和独特性在性能上得到充分凸显,同时因其特有的低速转矩大、运行稳定性强、谐波成分小等特征,这对我国电网而言输出电压自动调整功能能充分进行优势发挥。第二,变频器具备外部端子、键盘电位器与多功能段子等一系列操作方式,功能完善,可输入多种模拟信号(如电流、电压、频率等效范围检测,转速追踪等);并且变频器可实现摆频运行与程序运行等一系列模式。第三,因变频器全系列元件应用的是西门子产品,有极强的保护性能,可靠稳定,能很好的避免过流、短路、过压等问题,确保本机能正常运行。并且变频器有良好的绝缘耐压性,产品质量好,设定简单等使得其有更强的适用性。
3)电路发挥的作用。在安装PLC和变频器的时候,保证电路的稳定是保障工作的必要。电路在安装过程中,应该采取边安装边测电的方式,这样更能使电流稳定,这同样属于工作期间需引起重视的关键环节。在电路安装完毕之后,不要急着通电,应该先再次检查电路是否安装正确,查看是否有少安装或者多安装的情况。另外,测量一下接触元器件的连接点,这样可以发现一些接触不良的地方,若有漏电情况应该及时对此进行维修。电路在工业中也是起到了很大的作用,在安装电路的时候,一定要小心谨慎,综合考虑多方面因素,不要遗漏一些小问题,有时一些小问题也可能出大错,保证电路的稳定才能更好地协调其他设备的安装稳定。应认真复查电路,查看电路有无正确安装,或存在设备多安装或少安装的现象,同时应认真检测每个接触元器件连接点,明确有无接触不良或短路现象,若发生漏电务必要及时维修与处理。电路调试的具体流程总结如下:
第一,应认真查看明确电路整体状况,了解电路面板线有无准确连接,有无看似连接实际并未连接的线,或易短路的线;是否存在两条或多条线混淆的情况;此后,使用最小量程档的万用表对电路面板进行检查,查看开路处和闭路处有无正确开路与闭路,地线是否漏接,电源连线连接的安全性等,同时需测量电源有无短路现象。测量期间可直接进行元器件连接点测量,如此可明确有无以上情况的同时又弄清楚是否存在接触点不良现象。第二,电路调试过程的关键环节之一即硬件电路调试。调试期间务必要注意细小环节的把控,根据电路功能原理做好各个单元电路的调试,再作整体调试,后进行整个电路的调试。电路在工业生产里发挥的作用是相当大的,电路安装过程里务必要综合考量多方因素,认真谨慎,切不可遗漏或放过存在的小问题,确保电路稳定性得到保障。
[关键词]微电子控制;机电设备;工业
[DOI]1013939/jcnkizgsc201533046
工业机电设备在利用机电一体化系统时,微型计算机发挥着十分重要的作用,主要包括控制机械工业的生产过程、对物理参数进行测试和记录、对测量参数进行计算与分析、监管机械工业生产过程等。计算机选择、硬件系统设计、团建开发以及计算机系统维护等工作都是机电一体化系统正常运行的重要内容。
1机电一体化系统的构成以及运行原理
本系统的构成主要包括一台可编程逻辑控制器(PLC)、一台变频器、一台管路压力变送器、多台循环离心泵。其中电动差压变送器对给水量、蒸发量以及管路水量这三个变量进行检测,最后由可编程逻辑控制器(PLC)进行计算,并输出4~20mA的电流信号,对变频器进行控制,实现调节给水泵转速的目的。
系统的设计需要全面考虑多方面因素,才能保证正常运行,由于变频器的输出频率对整个系统的控制效果具有直接重要的决定作用,因此首先应对变频器的输出频率进行确定,通过对水泵流量、扬程以及用水量的最大程度与最小程度进行确定,确定输出频率。在系统中,PLC可以通过压力变送器将用水量的大小反映出来,再分配给循环离心泵,同时工作人员应对循环泵的频率进行及时调节,以保障能源分配的合理性。管路循环水的压力是本系统中的关键控制变量,使用点的多少会直接影响到管路循环水压力的大小,压力情况通过压力变送器传输到PLC实现控制调节。
2可编程逻辑控制器的特征与应用情况
21特征
可编程逻辑控制器(PLC)作为工业控制器具有逻辑运算、计数控制、定时控制、步进控制、数据处理以及A/D与D/A转换等功能,主要进行微处理。PLC具有体积小、省电、价格低廉、实现积木式组合等特征,同时吸取了计算机技术与微电子技术,其发展速度很快。PLC在机电设备单机自动化、生产线自动化控制、工业生产过程自动化中都具有重要作用,并且在柔性制造系统、工业机器人以及大型分散型控制系统中均发挥出不可忽视的优势。当前PLC、工业机器人以及数字控制技术已经发展成为机械工业中自动化控制的三大关键技术。
当前,PLC已经实现了直接与工业现场信号进行连接的功能,其数字及模拟量输入、输出功能不仅在离散型开关量控制系统中发挥着重要作用,同时在连续的流量控制过程中也经常被应用。
PLC的控制程序可以按照需求进行调整和变化,柔性较好。当生产设备需要更新或生产工艺流程出现调整时,PLC的硬件设备不需要进行改变,只需要对其控制程序按要求进行调整即可,具有较强的应用性。
PLC的编程操作较为便捷,安装及维修都十分方便。PLC的编程和监控是通过利用编程器实现的,因此,使用者在对控制程序进行调试和编程时只需掌握梯形图语言就可以。同时,PLC的自诊断功能较好,在故障出现时能够及时进行维修。
22应用情况
PLC应用程序的开发可以直接在个人计算机上进行并生成可执行文件,对Microsoft embedded Visual C++开发环境提供的下载功能可以进行直接使用。PLC在应用中运行控制程序,同时人机界面中会运行可执行文件。利用串口两者可以实现通信,并且人机界面为主动方。PLC通过接收人机界面发送的监控要求,完成相应的操作,并将相应的控制数据反馈给人机界面,从而实现监控数据的存储、打印以及传输至ERP管理系统等。
3变频器调速器的作用
其一,相较于传统的正弦波控制技术,由于变频器采用电压空间矢量控制技术,在性能上体现出更好的先进性与独特性,并且具有低速转矩大、谐波成分小以及运行稳定性更好等明显特征,相对于我国电网来说其输出电压自动调整的功能发挥出很大优势。其二,变频器具有键盘电位器、外部端子以及多功能端子等多种操作方式,使其功能更加全面,能够对多种模拟信号进行输入,包括电压、电流、频率等效范围检测、转速追踪等。同时,变频器还具有摆频运行及程序运行等多种模式。其三,由于变频器全系列主元件均采用西门子产品,保护性能更强,更具可靠性,能够对短路、过流、过压等问题进行预防,保证本机的正常运行。同时变频器的绝缘耐压性能较好,产品质量高,键盘布局合理、设定简洁等特征使其应用性更强。
4变频器的工作状态
变频器的工作状态包括手动和自动两种,其中手动工作状态主要是在PLC停止工作时进行人工操作行为,通过调节电位器对变频器的输出频率进行给定。自动工作状态即由PLC的输出信号对变频器的输出频率进行控制。相较于传统的调节阀控制方式,PLC控制具有节电、控制水泵磨损等优点,对延长设备寿命以及提高系统的自动化水平具有重要作用。
5调试电路
在进行电路调试时可以通过两种方法进行,一是在全部电路安装结束后进行统一调试,二是在电路安装过程中进行调试,以电路原理框图中的功能将复杂电路划分为单元进行同步安装和调试,在单元安装与调试的基础上逐渐扩大范围,最后完成整机调试。下文主要对应用第二种调试方法的调试工作进行分析。
在调试电路的过程中,首先,应通过目测对电路面板进行仔细检查,判断电路连线、连桥等是否正确可靠,是否存在虚接、短路或混线等问题。其次,在初步的目测检查后进行静态检查,利用万用表的最小电阻量程档对电路面板进行检查,对开路、闭路、地线连接、电源连线以及电源到地情况进行检查。在电路安装结束后,应先以原理为依据为电路连线等各方面进行全面检查,确定无误后再通电。在电路测量中为了排查接触不良等情况,应尽可能对元器件的连接点进行直接测量,在对电源电压进行测量时应保证电压情况正常,尤其是连接PLC以及调速变频器电路上的电源电压,必须保证是正确的。最后,对硬件电路进行调试,应综合全面地将各种影响因素考虑进去,按照电路功能的原理要求进行调试,对硬件各部分单元电路进行仔细调试,最后进行整体调试。
参考文献:
关键词:电动机软起动器;全压起动;可编程控制器
0 引言
电力拖动和电力拖动系统是用电能来驱动和控制生产机械拖动,驱动、控制,它由三个部分组成:电动机,电动机的控制设备和保护设备,电动机与生产机械的传动装置。在电力拖动的运动环节中生产机械对电动机运转的要求包含启动;改变运动的速度(调速);改变运动的方向(正反转)制动。 电力拖动系统的控制方式一般有:1. 继电——接触器式有触点断续控制 2. 连续控制,为了使控制系统具有良好的静态特性和动态特性,常采用反馈控制系统。3. 可编程无触点断续控制;20世纪60年代出现了顺序控制器,它能根据生产的需要灵活的改变程序,使控制系统具有较大的灵活性和通用性。1968年,美国通用汽车公司(GM)为了适用生产工艺不断更新的需要,希望用电子化的新型控制器代替继电器控制装置,并对新型控制器提出了“编程简单方便、可现场修改程序、维护方便、采用插件式结构、可靠性要高于继电器控制装置”等10项具体要求。1969年,美国数字设备公司(DEC)根据上述要求,研制出了世界上第一台可编程控制器,并成功运用到美国通用汽车公司的生产线上。其后日本、德国等国家相继研制出可编程控制器。早期的可编程控制器是为了取代继电器控制系统,仅有逻辑运算、顺序控制、计时、计数等功能, 因而称为可编程逻辑控制器(PLC)。
可编程控制器(PLC)是集计算机技术和自动控制化技术于一体的新型控制系统。这一系统解决了工业控制系统中大量开关控制的问题,逐渐取代了耗能多、故障率高的继电器控制系统。随着PLC技术的进步,其应用领域更是不断扩大,可采集存储数据,还可对控制系统进行监控。PLC能编制各种各样的控制算法程序,完成闭环控制。这种过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。此外,随着工厂网络自动化的发展,PLC可实现通信及联网功能,更有助于工业生产的控制过程的监控。如今,PLC技术已经被广泛应用于冶金、石油、化工、建材、机械制造、电力、汽车、轻工、环保以及文化娱乐等各行各业。233网校论文中心
电机电脑节电无触点软起动器是近年来在国内出现的新技术,具有节电效率高,软起动特性好等特点。对于我公司这样的大型企业,在动力设备中的应用,节能降耗的意义将十分重大。
1 电动机软起动器的节电原理
在生产实际当中,一些电气设备经常处于空载或轻载状态下运行,轻载或空载的电动机在额定电压的工作条件下,效率和功率因数均很低,造成电能大量浪费。衡量电动机节电性能的重要指标为电机空载或轻载时最低运行电压的大小,即功率因数CosΦ的大小。为了说明电动机在不同负载的情况下运行,电压U与功率因数CosΦ的关系,以Y132S-4型,5.5KW三相异步电动机为例。CosΦ的大小反应了负载的变化。软起动器正是利用微机技术,用单片机作CPU,用可控硅作为执行元件,实时检测电流和电压滞后角,即功率因数Φ角,输入给单片机,单片机根据最佳控制算法,输出触发脉冲,调整可控硅的导通角,即可调整可控硅的输出电压,使空载或轻载运行时降低电机的端电压,可使电机的铁损大大减小,同时也可减小电机定子铜损,从而减小电机空载或轻载时的输入功率,也就减小了电机有功和无功损耗,提高了功率因数,实现了节电控制。
2 电动机软起动技术
交流传动技术的发展也是随着电子技术和计算机技术的发展在工业上有了重要的应用,尤其是在钢铁工业中,使复杂的矢量控制技术得以实现,无论是大容量电机还是小容量电机现均可使同步电机或者异步电机实现可逆滑调速。也使交流传动系统在轧钢生产中得到广泛的应用。
电动机传统的起动方式有全压起动和将压起动,软起动是一种完全区别于全压和降压起动的新的起动方式,是电子过程控制技术。所谓软起动,是以斜坡控制方式起动,使电动机转速平滑,逐步提高到额定转速。按照电动机起动电流大小进行分类,全压和降压起动属于大电流起动方式,软起动属于小电流起动方式。全压起动,起动电流是额定电流的4-7倍,起动冲击电流是起动电流的1.5-1.7倍;起动电流大,起动转矩不相应增大,Ts=KtTn=K(0.9-1.3)Tn。
降压起动,可部分减小起动电流,起动转矩下降到额定电压的K2倍。降压起动是轻载起动,有起动冲击电流、起动电流及二次冲击电流;二次冲击电流同样对配电系统有麻烦。
全压和降压起动的大电流,致使电动机谐波磁势增大,增大后的谐波磁势又加剧了附加转矩,附加转矩是电机起动时产生震动和噪音的原因。
全压和降压起动,都要受单位时间内起动次数的限制。电动机本身的发热主要建立在短时间大电流时。如通过6倍额定电流,温升为8-15℃/S;起动装置的自耦变压器或交流接触器起动引起堆积热;如交流接触器一般要求起动次数每分钟不超过10次。而软起动器可频繁操作,具有电动机起动电流小,温升低;软起动器采用的无触点电子元件,除大功率可控硅外,工作时温升很低。
此外,软起动器还具有多种保护功能,配合硬件电路,软件设计有过载、断相、欠压、过压等保护程序,动作可靠程度高。归纳起来,软起动器很好的解决了全压和降压起动电流过大及其派生的许多问题。
3 软起动器在动力设备上的应用
软起动器箱内面板上设有两个速率微动开关,分别对应四种起动速率:重载、次重载、次轻载、轻载,起动时间分别是90S、70S、65S、60S。使用时根据起动负载选相应的起动速率。引风机用电动机的起动:其起动转矩与离心式水泵类似,阻转矩都与转速成正比,但是,风机与水泵的结构不同,风机的转动惯量比水泵大的多,空气的流动性比水小,如果风机不关风阀起动,将因空气升能,管道阻力,摩擦阻力等因素,致使风机起动比水泵难,起动加速的时间较长,风机起动属重载起动。
风机负载变化大,从风机特性曲线上可看出。一般风机功率计算的工作温度参数200℃,只是取近似中间值。输送的烟气温度越高,阻转矩越小;反之,输送的烟气温度越低,阻转矩越大。风机在起动之初,要求关闭风阀,实际应用中则是将风阀固定住。所以在选用软起动器时,要根据风机起动时电动机工作电流的大小,来选择相匹配的软起动器。风机的节电潜力在高炉温区段。
关键词;工业电气化;电气防爆;安全监测技术
Abstract: with the rapid development of our industrial construction, industrial production as indispensable electric equipment widely used in the manufacturing industry, such as the construction industry, however, due to the use of the environment many with high temperature, high humidity and corrosive etc. Characteristics. So, its security is very important. Especially when problems arise, will directly affect the enterprise of the normal production progress and is likely to cause serious economic loss and personal safety. Therefore, electrical equipment in the explosion protection safety must implement, and sample good correlation technical support. This article in view of the electrical explosion hazard has reason is analyzed, and puts forward some preventive measures.
Keywords; Industrial electrification; Electric explosion-proof; Safety monitoring technology中图分类号:X932文献标识码:A文章编号:
随着我国经济建设的高速发展,我国工业逐渐步入了工业电气化进程,作为电气化工业中的重要部分,电气设备的质量问题备受人们的关注。因为,很多电气设备所处的工作环境相对恶劣,并且,很多外界因素都有可能引起这些电气设备发生爆炸,所以工作人员的安全系数相对较低,并且,一旦出现危险,将会为企业和个人带来重大的损失。电气设备的防爆工作在其中显得就尤为重要,如果能够认真做好电气设备的防爆工作,将危险系数降至最低,则会为企业带来重大的好处。本文针对当前企业中电气设备爆炸的危害以及发生的原因进行分析,并提出一些相关的防范措施。
一、电气爆炸的危害及原因分析
很多时候,往往是因为人们不能充分认识到电气爆炸的危害性才使得事故的发生,因此,对其危害及原因的认识是非常关键的。
(一)电气设备爆炸的危害
电气设备发生爆炸主要体现在以下几个方面:威胁操作人员生命安全; 造成设备损坏; 造成经济损失。
(二)电气设备爆炸的原因
引发电气设备发生爆炸的原因很多,大多数情况下,发生电气设备爆炸的原因是电气线路或者设备自身出现问题而引起的爆炸。
1.高温。当设备中线路发生短路的时候,由于电流的迅速增大,在很短的时间内产生了大量的热量,而又不能及时的进行降温,就会大大超出设备能够承受的温度范围,从而引起火灾或者爆炸。另外,如果设备设计存在缺陷或操作失误,设备或线路的负载超过标定值,造成过载,产生大量热能。若这些热量无法快速、合理地得到释放,累积起来也会造成设备爆炸。
2.电火花、电弧。实际工作中,电火花与电弧也是引发设备发生爆炸的重要原因。电火花、电弧自身的温度极高,甚至可高达6 000℃,其飞溅必定增加火灾或爆炸的概率。
二、安全检测技术的现状与应用
科技的不断进步,促进了检测设备和检测技术的不断更新和提高。我国坚持“科学化、规范化、标准化”的原则,结合设备使用情况和工作环境,将防爆电气设备的安装、维修等多种技术手段综合运用到电气防爆安全检测过程中,有效地提升了检测的准确性和及时性。
(一)型号检测
按照国家规定,防爆电气设备必须具有规范的防爆标志,包括“Ex”标志、防爆类型、防爆级别和温度组别等内容。检测过程中应将这几要素是否符合相关规定作为重点进行核查。
(二)安装检测
任何疏忽都可能给电气设备带来安全隐患,因此还可以通过检测电气设备的外壳以及排气通风系统等方面来消除潜在隐患。确保严格按照标准进行安装操作。
(三)运行检测
为了更好地掌握设备的情况,还有必要在设备运行状态下检测。采取有效措施,控制设备温度、避免出现电火花或电弧。
(四)线路检测
通常,电气设备的线路都是由若干个电路组合而成,比较复杂。若线路设计不当或连接不合理,就有可能造成短路或过载。因此,要认真做好线路的检测工作,重点检测线路的密封或隔离情况。
(五)接地检测
良好的接地保护可以有效地防止电气爆炸的发生。一般来说,接地方式包括工作接地、静电接地、防雷接地等很多种方式,在进行检测时,应按照具体的接地方式,仔细排查,确保接地安全牢固。
三、电气防爆预防措施
为确保电气设备的良好性能,减少或杜绝发生爆炸事故,实现安全生产和正常使用,除切实提高电气防爆安全检测技术水平,扎实做好安全检测工作以外,最根本的是要未雨绸缪,采取适当的预防措施。这也要求设备操作人员要强化专业知识,掌握相关的检测技术和检测手段,与设备维护人员一道,定期维护、检测电气设备。具体来说,可以采取以下几项预防措施:
(一)敷设线路
在爆炸性气体环境中,进行电路的敷设时:
1.当蒸汽的重量比空气小时,电气线路的敷设可采用电缆沟敷设,或在较低处进行。进行电缆沟敷设时,要注意根据周边环境和实际情况,设置管道等排水设施,同时采取向电缆沟内部充砂等辅助措施。
2.当蒸汽的重量比空气大时,电气线路的敷设可将线路直接埋入地下,或借助电缆桥架的帮助,在高处进行架空敷设。
(二)线路的连接
1.一般来说,电气线路是不可以直接连接的。2.如果确实需要进行连接,就要注意连接方式,保证线路的合理搭配,在保证接触性良好,线路电流通畅的同时,还要防止线路的局部过热,具体可按需要选择熔焊、压接、钎焊等方式进行连接。3.为防止接触不良,应选择合适的过渡接头。
(三)线路保护
根据电气控制的系统性原理,通常要选择性能优良的熔断器,以防止电气线路出现短路、过载。这是基于熔断器的额定电流高于电气设备额定电流的原理,当线路的电流过大,设备温度过高时,熔断器会自动切断线路,避免爆炸事故的发生。
四、小结
为了防止电气设备因操作不当或电路故障而发生爆炸等安全事故,造成人员危害和经济损失,就一定要理解和掌握电气设备防爆知识和技能,规范操作电气设备,加强防爆安全检测工作,及时发现事故潜在隐患,有针对性的采取有效的预防措施,提高其安全可靠性,降低事故发生概率和频率。
参考文献:
[1] 买俊超.工业电气设备安装措施及维修[J].中国新技术新产品,2011,10
[2] 刘志刚.智能建筑及工业电气设备安装工程中的接地问题分析[J].装备制造,2009,08
[3] 莫华荣.JJG1054-2009《钳形接地电阻仪》检定规程解读[J].中国计量,2010,10
关键词:先进制造技术;电力设备;应用
引言
制造业是工业的核心产业,而制造技术则是其发展中至关重要的一环。传统的制造技术早已无法适应行业的发展要求,先进制造技术是促进产品更新换代的必要保证。电力设备制造的过程比较复杂,对各方面的条件要求较高,只有依赖于先进制造技术才可以加快其发展步伐。
1.先进制造技术的概述
所谓先进制造技术,是指将电子学、机械理论等多门学科综合应用到制造业中的产品设计、制造等的综合技术的统称。先进制造技术以增加效益为宗旨,最终提高产品竞争力,满足市场的多种需求。该技术是从传统制造技术衍生而来,但这两者却有着天壤之别。传统制造理论局限于一个学科,仅限于较小的范畴。先进制造技术融合了多门学科,覆盖面很广,贯穿于前期设计规划、中期生产、后期的售后等一系列生产步骤。
2.我国电力设备制造业的现状
现阶段的国内电力设备制造业还在发展的初级阶段,承受着来自国内外市场的竞争压力。随着市场化的逐步推进,越来越多的国外电力设备制造企业开始进入我国,国内企业不仅要与国内同行进行激烈竞争,还要面对国外行业巨头的挑战。
2.1 产品设计研发能力弱,自主开发水平不足
国内的电力设备制造企业在产品设计研发上存在的问题主要有产品的品种较少、设计手段落后、研发周期过长、研发水平较低、没有自主知识产权等。尽管国内厂家在上世纪末就已经采用计算机辅助设计系统进行电力设备元器件的设计,也自主开发了适合国人使用的中文设计软件,但在系统化和集成化方面与国外相比仍有较大差距。
2.2生产设备落伍,制造工艺落后
国内电力设备制造企业的很多生产设备已经无法达到先进制造的要求,自动化水平较低。同时,制造工艺相对较为落后,生产成本较高,导致产品质量不够稳定。
2.3对市场的反馈较慢
建国初期的计划经济体制对我国电力设备制造行业造成的不良影响就是,企业对于快速变化的市场形势缺乏积极应变能力。近年来,为了加快对市场变化的响应能力,物料需求计划等新一代生产经营管理技术逐渐开始推广开来。
3.先进制造技术在电力设备制造工业中的应用
现阶段国内的电力设备制造行业处于严峻的市场竞争形势中,先进制造技术正是解决此困境的重要环节,由于其应用范畴较广,因此可以覆盖产品从原料、半成品、制成品到营销、售后服务等一系列进程。
3.1在产品开发与设计中的应用
3.1.1虚拟产品开发工具
虚拟产品开发指的是借助电脑对产品开发的一整套过程采取虚拟化设计,在制造模型之前能够熟悉所开发产品的每个角度,改进产品开发细节,尽早使新产品研发成功。详细的应用步骤如下:首先,在剖析产品信息的前提下对其展开生产管理,经由对开发步骤的逐步跟踪,加强各个机构之间的合作,并兼容对产品的物理学、动力学性能剖析等;其次,以动力学理论剖析产品的振动现象,同时借助虚拟模型剖析其运动原理,以此实现优化设计的诉求;再次,借助Ansys等软件,对其进行有限元分析,使产品结构设计趋于合理,从而节省不必要的开支,同时保障其以后被高质量地生产出来。
3.1.2计算机辅助设计工具
随着计算机技术的迅猛发展,计算机辅助设计方法也逐步得到了优化,能够进行基于参数的设计、特征向量与建模、受限管理等各个方面的研发。详细的应用如下:首先,在对产品信息进行分析之后,对其数据、图纸和配置予以进一步管理,这样能大幅度提高元器件的利用率;其次,利用计算机软件设计产品的立体造型,完成3D设计;再次,在产品数据管理的前提下加强产品的数字化管理,使得产品形成归一化建模,建立产品的架构。
3.2 在产品制造过程与工艺技术中的应用
早在上世纪九十年代,我国的电力设备制造商就已经采用数控加工手段生产元器件,同时在标准元件生产过程中研究利用计算机辅助制造技术。譬如研发了多系统联动数控制造技术以应用在大型水轮机元件生产中,还有应用于汽轮机元件生产或汽轮发电机元件制造的柔性制造系统技术等。数控加工科技已在电力设备制造业的各个方面得到了不同程度的应用,对于国内的电力设备制造工业而言,只有基于电力设备制造业的特征,深入推广应用数控加工、计算机辅助制造等先进制造技术,才能提高设备制造能力并不断完善生产工艺。
3.3 在生产经营管理中的应用
从行业整体发展情况来看,国内的电力设备制造工业的生产经营管理能力略显不足。为了提高国内电力设备制造工业的生产经营管理水平,以获取更高的经济收益,可以借鉴欧美同行业的发展经验,将先进制造技术应用在生产经营管理中。
3.3.1 决策支持系统
决策支持系统能够协助公司进行科学化经营决策。基于互联网和大众智能决策支持系统和多个团体的决策支持系统的鼎力支撑,集团能够从全局出发,制定出生产经营的远景规划和营销策略,在激烈的市场竞争中赢得主动。
3.3.2 企业资源计划
目前,在生产经营管理中逐渐应用了全新的手段,企业资源计划在功能和技术上都超过了传统的技术。可以基于公司的整体发展情况,以消费者为本,对整个集团的资源进行规划,科学合理地调配公司各层级的人力财力,尽最大可能支持企业开展电力设备制造工作。
4.结束语
由于我国电力设备制造业面临的竞争越来越激烈,因此必须采用先进制造技术来改造传统产业,发展先进生产模式,推广现代制造技术,使企业在激烈的市场竞争中取得领先优势,不断推进我国电力设备制造行业的整体发展。
参考文献:
[1] 杨叔子,吴波.先进制造技术及其发展趋势[J].机械工程学报,2003,39(10):73-78.
[2] 刘哲,孙林岩,李延海等.先进制造技术的应用研究[J].科技进步与对策,2005,22(12):87-88.
[3] 刘春杰.先进制造技术在制造业中的应用[J].机械管理开发,2013,(3):86-87,89.