发布时间:2023-10-10 15:35:04
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇高中数学重点知识,期待它们能激发您的灵感。
一般的,在一个变化过程中,假设有两个变量x、y,如果对于任意一个x都有唯一确定的一个y和它对应,那么就称y是x的函数,其中x是自变量,y是因变量,x的取值范围叫做这个函数的定义域,相应y的取值范围叫做函数的值域。下面小编给大家分享一些高中数学函数知识点,希望能够帮助大家,欢迎阅读!
高中数学函数知识一、一次函数定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)
二、一次函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b(k为任意不为零的实数b取任何实数)
2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k
四、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
设水池中原有水量S。g=S-ft。
六、常用公式:
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:|x1-x2|/2
3.求与y轴平行线段的中点:|y1-y2|/2
4.求任意线段的长:√(x1-x2)’2+(y1-y2)’2(注:根号下(x1-x2)与(y1-y2)的平方和)
高中数学函数知识2二次函数
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax’2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax’2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)’2+k[抛物线的顶点P(h,k)]
交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2ak=(4ac-b’2)/4ax?,x?=(-b±√b’2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x’2的图像,
可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。
对称轴为直线
x=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P(-b/2a,(4ac-b’2)/4a)
当-b/2a=0时,P在y轴上;当Δ=b’2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ=b’2-4ac>0时,抛物线与x轴有2个交点。
Δ=b’2-4ac=0时,抛物线与x轴有1个交点。
Δ=b’2-4ac
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax’2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax’2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
高中数学函数知识3反比例函数
形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
如图,上面给出了k分别为正和负(2和-2)时的函数图像。
当K>0时,反比例函数图像经过一,三象限,是减函数
当K
反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:
1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。
(加一个数时向左平移,减一个数时向右平移)
对数函数
对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:
可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
1、了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。
2、熟记基本导数公式;掌握两个函数和、差、积、商的求导法则。了解复合函数的求导法则,会求某些简单函数的导数。
3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。
(来源:文章屋网 )
无论掌握哪一种知识,对智力都是有用的,它会把无用的东西抛开而把好的东西保留住。下面小编给大家分享一些高中必修二数学知识,希望能够帮助大家,欢迎阅读!
高中必修二数学知识1不等关系
了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.
(2)一元二次不等式
①会从实际情境中抽象出一元二次不等式模型.
②通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.
③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.
(3)二元一次不等式组与简单线性规划问题
①会从实际情境中抽象出二元一次不等式组.
②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.
③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.
(4)基本不等式:
①了解基本不等式的证明过程.
②会用基本不等式解决简单的最大(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点.
数列
(1)数列的概念和简单表示法
①了解数列的概念和几种简单的表示方法(列表、图象、通项公式).
②了解数列是自变量为正整数的一类函数.
(2)等差数列、等比数列
①理解等差数列、等比数列的概念.
②掌握等差数列、等比数列的通项公式与前项和公式.
③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.
④了解等差数列与一次函数、等比数列与指数函数的关系.
高中数学必修二知识点总结:不等式
高中必修二数学知识2空间直线与直线之间的位置关系
①异面直线定义:不同在任何一个平面内的两条直线
②异面直线性质:既不平行,又不相交.
③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线
④异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.
求异面直线所成角步骤:
A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.B、证明作出的角即为所求角C、利用三角形来求角
(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.
(8)空间直线与平面之间的位置关系
直线在平面内——有无数个公共点.
三种位置关系的符号表示:aαa∩α=Aaα
(9)平面与平面之间的位置关系:平行——没有公共点;αβ
相交——有一条公共直线.α∩β=b
2、空间中的平行问题
(1)直线与平面平行的判定及其性质
线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.
线线平行线面平行
线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,
那么这条直线和交线平行.线面平行线线平行
(2)平面与平面平行的判定及其性质
两个平面平行的判定定理
(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行
(线面平行面面平行),
(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.
(线线平行面面平行),
(3)垂直于同一条直线的两个平面平行,
两个平面平行的性质定理
(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行线面平行)
(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行线线平行)
3、空间中的垂直问题
(1)线线、面面、线面垂直的定义
①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.
②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.
③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.
(2)垂直关系的判定和性质定理
①线面垂直判定定理和性质定理
判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.
性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.
②面面垂直的判定定理和性质定理
判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.
性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.
4、空间角问题
(1)直线与直线所成的角
①两平行直线所成的角:规定为.
②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.
③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角.
(2)直线和平面所成的角
①平面的平行线与平面所成的角:规定为.②平面的垂线与平面所成的角:规定为.
③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”.
在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,
在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线.
(3)二面角和二面角的平面角
①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.
②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.
③直二面角:平面角是直角的二面角叫直二面角.
两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角
④求二面角的方法
定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角
垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角
高中必修二数学知识3圆的方程
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.
2、圆的方程
(1)标准方程,圆心,半径为r;
(2)一般方程
当时,方程表示圆,此时圆心为,半径为
当时,表示一个点;当时,方程不表示任何图形.
(3)求圆方程的方法:
一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.
3、高中数学必修二知识点总结:直线与圆的位置关系:
直线与圆的位置关系有相离,相切,相交三种情况:
(1)设直线,圆,圆心到l的距离为,则有;;
(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】
(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
设圆,
两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
当时两圆外离,此时有公切线四条;
当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
当时两圆相交,连心线垂直平分公共弦,有两条外公切线;
当时,两圆内切,连心线经过切点,只有一条公切线;
当时,两圆内含;当时,为同心圆.
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
5、空间点、直线、平面的位置关系
公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.
应用:判断直线是否在平面内
用符号语言表示公理1:
公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
符号:平面α和β相交,交线是a,记作α∩β=a.
符号语言:
公理2的作用:
①它是判定两个平面相交的方法.
②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.
③它可以判断点在直线上,即证若干个点共线的重要依据.
公理3:经过不在同一条直线上的三点,有且只有一个平面.
推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.
公理3及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据
公理4:平行于同一条直线的两条直线互相平行
高中必修二数学知识4直线与方程
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.
当时,;当时,;当时,不存在.
②过两点的直线的斜率公式:
注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.
(3)直线方程
①点斜式:直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.
②斜截式:,直线斜率为k,直线在y轴上的截距为b
③两点式:()直线两点,
④截矩式:
其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.
⑤一般式:(A,B不全为0)
注意:各式的适用范围特殊的方程如:
(4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);
(5)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线(是不全为0的常数)的直线系:(C为常数)
(二)垂直直线系
垂直于已知直线(是不全为0的常数)的直线系:(C为常数)
(三)过定点的直线系
(ⅰ)斜率为k的直线系:,直线过定点;
(ⅱ)过两条直线,的交点的直线系方程为
(为参数),其中直线不在直线系中.
(6)两直线平行与垂直
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.
(7)两条直线的交点
相交
交点坐标即方程组的一组解.
方程组无解;方程组有无数解与重合
(8)两点间距离公式:设是平面直角坐标系中的两个点
(9)点到直线距离公式:一点到直线的距离
(10)两平行直线距离公式
在任一直线上任取一点,再转化为点到直线的距离进行求解.
高中必修二数学知识51、柱、锥、台、球的结构特征
(1)棱柱:
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.
(2)棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.
(3)棱台:
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.
(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.
2、空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、
俯视图(从上向下)
注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.
3、空间几何体的直观图——斜二测画法
斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半.
4、柱体、锥体、台体的表面积与体积
(1)几何体的表面积为几何体各个面的面积的和.
关键词:教学质量;落实知识点;挖掘
作者简介:尹维香(1979-), 女 ,江苏沭阳人,本科, 中学一级教师 ,主要从事中学数学教学研究.
在教学过程中,高效率高质量教学,并不在于教师知识点传授的多少,而在于教师在教学过程中可以将知识点落实,这是中学数学教师教学过程中应注意的地方,同时也是提升教学质量的关键.
一、钻研教材,挖掘知识点
在中学数学教学过程中,知识点并不是直接呈现给学生的,而是要通过学生的想象思维与逻辑思维推理总结,才能够得出的知识,但是在教学过程中,由于很多学生思维与能力的限制,在学习过程中经常会出现看不懂、不理解的教学现象,因此单凭学生自身去挖掘知识点是很难实现的,这就需要教师的帮助,为此作为一名中学数学教师,一定要认真备课,仔细钻研教材,把教材中所有隐藏的知识点都挖掘出来,学生才能全面的理解数学知识,这是提升学生数学能力与数学成绩的关键[1].
例如在学习《函数的基本性质》这一内容时,教材中对于函数给出了这样的两种性质,首先是函数的单调性,即函数在某一定义域内,任意两个自变量若f(x1)f(x2),则f(x)在区间中为减函数,且在f(x0)处,为函数的最值,这是教材中呈现的知识点,但是函数的最值与函数的区域有何种关系,s是教材中一个隐含的知识点,为此教师可以这样的引导学生,在闭区间中求出函数值域就可有函数最值,但是有最值却未必能求出函数值域,进而加深学生对于函数基本性质的认识.
二、启发教学,揭示知识点
在中学数学教学中,教师可以帮助学生挖掘知识点,但是却不可以将这些知识点灌输式的传授给学生,这样学生只会成为被动接受知识的容器,长期以往学生会对教师产生依赖性,同时还会造成学生对于数学知识学习的抵触心理,不利于学生的数学学习,为此在今后的教学中,教师可以尝试采用启发式的教学方式,通过一些启发活动,让学生自己去揭示知识,这样学生所获得的知识才能真正的属于自己,是教师落实知识点教学的一种体现.
例如在学习《函数与方程》这一内容时,教材只是说明对于二次函数f(x)=ax2+bx+c(a≠0),当f(x)=0就为一元二次方程,即ax2+bx+c=0,所以零点就是一元二次方程的根,那么这时教师就可以采用启发式的教学方法,引导学生思考一个一元二次方程有几个零点?是否有几个零点就有几个根?通过这种启发,引起学生质疑,从而引导学生主动探究,总结判断一个函数是否有零点的方法.
三、例题讲解,强化知识点
教师进行教学时,一节课程只有短短的45分钟,因此在有效的时间内,强化落实知识点十分重要.有效的例题讲解可以加深学生对于知识的认知,同时也可以提升学生的知识运用能力,尤其是经典例题讲解,可以使课堂教学呈现出意想不到的教学效果,由此可以看出,例题的讲解不在于多少,而在于精,在教学中教师可以通过一道例题讲解,让学生联系多个知识点,是教师教学掌控能力的体现,同时也是高效率、高质量课堂教学的体现[2].
例如在学习《直线、平面垂直的判定及其性质》这一内容时,教师就可以从以下三个经典命题出发,从而有针对性的进行讲解:
(1)一条直线垂直于平面内的一条直线,则这条直线与平面垂直( );
(2)两条直线互相垂直,其中一条直线与一个平面平行,那么另外一条直线与这个平面垂直( );
(3)平面内与这个平面一条斜线垂直的直线互相平行( ).
这三个问题几乎涵盖了所有直线以及平面垂直的判定性质,因此在教学中教师只要帮助学生解决这三个问题,就达到了强化教学知识点的作用,这是教学中教师可以掌握的一种教学方法.
四、查漏补缺,补充知识点
在中学数学教学过程中,所涉及到的知识点十分繁杂,这种深度与广度是超出课堂教学时间限制的,因此在教学中即使教师的教学能力再强,也很难将所有知识点面面俱到的传授给学生,而对于学生而言,由于能力的限制不可能将知识全部的理解吸收,因此在教学过程中学生存在知识点缺陷是一种常见的教学现象,但是教师面对这种现象却不能放任不管,这会对学生的成绩提升造成阻碍,为此教师可以通过作业、课堂提问以及课堂测试的方式,对学生掌握的知识信息进行检测,从而有针对性的进行查缺补漏,帮助学生补充这些从前遗漏的知识点,进而消除知识点缺失隐患,但是值得注意的是,学生的知识点缺陷是一个顽症,不能一蹴而就,也不能一劳永逸,教师应该反复的进行填补漏洞工作.
综上所述,在中学数学教学过程中落实知识点对于教师而言是一项艰巨的任务,为此在今后的教学过程中,教师一定要秉持严谨的教学态度,对教学方法以及教学思想进行创新,从而尽可能的将知识点进行落实,从本质上提升中学数学教学质量.
参考文献:
关键词:不等式证明题;函数;方程;几何;概率
在高中数学学习中,我们发现高中数学知识涉及很多方面,如:函数、方程、几何、三角函数、概率、不等式等。在学习中,除掌握这些知识点及运用以外,最重要的是把学到的知识运用到解决具体的试题中,并在此基础上获得一种思路与方法。学生在解题时,往往容易思路僵化,片面联系知识,而造成解题困难。学生如何在做题中才能避免这种困境呢?这就需要学生平时养成多思考、多联系、多归纳、多总结的习惯。
在高中数学必修五第三章不等式教学中,发现如下这样一个例子,我们如何去证明呢?本文尝试用不同知识来进行解决,以达到引发大家思考与探索的目的。
例:设变量x、y、z在区间(0,1)中取值,试证:x(1-y)+y(1-z)+z(1-x)
一、利用不等式的性质
证:由题知(1-x)(1-y)(1-z)>0可得:x+y+z-xy-yz-zx
二、利用变量替换
证:不妨设x=,y=,z=,其中:a,b,c均为正数,代入整理有:b+bc+c+ca+a+ab
三、利用函数的性质
证:不妨设f (x)=x(1-y)+y(1-z)+z(1-x)-1=(1-y-z)x+y(1-z)+z-1,其中x∈(0,1),从而有:①当1-y-z=0时,f (x)=-yz
四、利用几何图象性质
证:如右图,正三角形ABC边长为1,设点A1、B1、C1分别在边BC、CA和AB上,且有AC1=x,CB1=y,BA1=z,显然SAB1C1+SBA1C1+SCA1B1
x(1-y)+y(1-z)+z(1-x)
即x(1-y)+(1-z)+z(1-x)
五、利用三角函数性质
证:不妨设x=sin2A,y=sin2B,z=sin2C,则
原式=sin2Acos2B+sin2Bcos2C+sin2Ccos2A
=sin2Acos2B+sin2Bcos2C+(1-cos2C)(1-sin2A)
六、利用概率知识
证:设随机事件A,B,C相互独立,且P (A)=x,P (B)=y,P (C)=z,由概率加法公式有:P (A+B+C)=x+y+z-xy-yz-zx+xyz。
又0≤P (A+B+C)≤1,所以0≤x+y+z-xy-yz-zx+xyz≤1,即证。
七、利用基本不等式与二次函数的结合
证:用基本不等式x(1-y)≤()2,当且仅当x=1-y时,等号成立。
x(1-y)+y(1-z)+z(1-x)≤()2+y(1-z)+z(1-x)
=x2+(1-x)(1-z)+z(1-x)=x2-x+1