发布时间:2023-10-09 15:04:38
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇防洪风险评估,期待它们能激发您的灵感。
关键词:南水北调工程 交叉建筑物 洪水 防洪风险
南水北调中线工程是由丹江口水库引水枢纽、输水总干渠和沿途省市供水区组成的大型调水工程,跨江、淮、黄、海四大流域到达天津、北京,线路全长1264km。南水北调中线工程是以解决京津及华北地区用水,缓解水资源紧缺为主要目标[1]。
南水北调中线总干渠沿线河流水系发达,与大小近千条河流交叉。其左侧的太行山区和伏牛山区曾发生过“63.8”和“75.8”两场国内最著名的特大暴雨,因此,中线总干渠如遭遇超标准的特大洪水而使其中任一座交叉建筑物发生失事时,则整个工程就可能受到影响,以致被迫中断运行,并且中线总干渠的走向几乎与所有交叉河流成正交或斜交之势而易受到洪水的冲击。可见,该工程存在许多不确定性和风险因素,特别是引水工程交叉建筑物的综合防洪风险问题,传统的水文计算方法很难解决,简单的概率叠加结果也使许多人怀疑该引水工程的可行性。对该问题一直争论不休,至今尚未达成统一的共识。在南水北调工程即将实施之际,对该问题的认识及评估,已成为工程迫切需要解决的问题之一。
1 防洪风险估算模型的建立
在南水北调工程中线总干渠上,若有n个交叉建筑物,其设计标准分别为P1、P2、…、Pn,在暴雨和洪水同频率的基础上,相应的设计洪水或设计暴雨分别为F1、F2、…、Fn,则整个南水北调中线总干渠因交叉建筑物因超标准洪水出现而中断运行的风 险为
R=P{(F1>FP1)∪(F2>FP2)∪……∪(Fn>FPn)}
(1)
可见,为了推求上述组合事件的概率,需要各交叉建筑物设计洪水或设计暴雨的n维联合概率密度分布函数f(F1,F2,…,Fn),以及f(F1,F2),f(F1,F3),…,f(F1,Fn),f(F2,F3),f(F2,F4),…,f(F2,Fn),…,等大量2至n-1维的联合概率密度分布函数。由数理统计学可知,在各变量的概率密度分布函数f(F1),f(F2),…,f(Fn)均属正态分布或对数正态分布时,其联合概率密度分布函数f(F1,F2,…,Fn)等才可能会有函数表达式。而实际上,水文变量大都是偏态分布,特别是暴雨和洪水。这样当n较大时,在实际水文资料条件下是不可能推求出这些联合概率密度分布函数的。
针对上述情况,20世纪80年代初期开始,人们为了解决多项因素共同作用下的风险计算问题,不得不通过模拟技术求解数值解。由于受到计算能力的限制,最初在保证计算精度的前提下,如何减少计算机时就成为重点考虑的问题。因此,Bourgund U和C G Bucher曾提出重点抽样法ISPUD(importance sampling procedure using design)的模拟技术[2]。而其应用理论主要包括联合概率法、变量构造法和多元极值理论等,其中变量构造法在分析问题前,需要先确定所研究变量的函数表达式,如Jonathan AT曾把区域降雨量表达为其中m、ν是有关参数,xj代表各雨量站的降雨量[3]。多元极值理论的依据是极值点过程理论,其边际分布一般为标准Gumbel分布。实际降雨过程的复杂性,及水文变量非标准Gumbel分布,使变量构造法和多元极值理论的应用,在水文风险计算上受到了很大的限制。为此,朱元NFDA9等人曾探讨过二维复合事件的风险计算模型,并用于分析南水北调中线工程的防洪风险问题[4]。冯平等人也曾研究过暴雨洪水共同作用下的多变量防洪计算问题[5]。
但对于二维情况,依据联合概率理论有
p(F1∪F2)=P(F1)+P(F2)-P(F1∩F2)
(2)
其中
(3)
(4)
及
(5)
式中f(x)和f(y)分别为两个交叉建筑物设计洪水或设计暴雨的概率密度分布函数,按我国的防洪规范二者均采用PearsionⅢ型分布[6],即
(6)
及
(7)
而f(y/x)是暴雨或洪水的条件概率密度分布函数,它是由两部分决定的:(1)在暴雨或洪水x 条件下,暴雨或洪水y的条件期望值E(y/x),它决定了这两个暴雨或洪水之间的关系;(2)在给定暴雨或洪水x下,暴雨或洪水y在E(y/x)附近的离散分布情况,它是因下垫面情况、暴雨时空分布等诸多不同因素综合作用的结果,因此由中心极限定理可假定其近似符合正态分布,即
(8)
如果有足够的暴雨或洪水资料,(1)部分可以通过建立这两个暴雨或洪水的相关关系来确定;(2)部分是给定某一暴雨或洪水x下,暴雨或洪水y的条件方差值σy/x,也可以通过实测暴雨或洪水资料估算。
若暴雨或洪水资源有限,或上述正态分布的假定难以保证,可以通过幂变换法等方法把x和y 正态化处理,并且对正态化后资料系列可采用偏峰检验法进行正态化检验[7]。将x和y转换为正态系列x1和y1后,则有
(9)
及
(10)
式(9)和式(10)中:Ex1和Ey1分别是2个交叉河流的暴雨或洪水正态化系列的均值;σx1和σy1分别是其均方差;r1是其相关系数。因此
(11)
两个交叉建筑物因水毁而中断运行的组合风险计算问题,就是求解式(1)~式(5)给出的二维复合随机模型,其中式(3)和式(4)可以通过传统的PearsionⅢ型分布曲线,即通过这2个交叉建筑物的设计防洪标准给出。而式(5)可以采用数值积分方法或Monte Carlo等方法计算。如果采用数值积分方法,式(5)可由下式近似给出:
(12)
式中:m和n分别是概率密度分布函数f(x1)和f(y1/x1)在(x1p,∞)和(y1p,∞)区域的离散区间数。
关键字:水电站管理风险识别风险分析风险评估风险对策
中图分类号:TV74文献标识码: A 文章编号:
引言
风险管理(Risk Management),这一名词最早出现在1930年美国管理协会发起的一个保险问题会议上,是由美国宾夕法尼亚大学的所罗门·许布纳博士提出的。随着经济社会的发展及全球化的蔓延,风险管理逐渐发展为一门理论,并应用于金融、财务、股市、施工项目管理等各种行业。本文广东省丰顺县梅丰水电站为例,运用风险管理理论对水电站运行管理过程中的风险因子进行识别、评估、分析,业主可以根据评估结果采取有效控制措施,减少风险损失。
1 风险评估理论
风险管理的方法和步骤与其所在的应用领域有关,而且与不同专家学者的个人见解有关。软件工程协会提出了风险管理的五个阶段:识别、分析、响应计划、跟踪和控制;美国国防部则建立了风险规划、风险评估、风险处理和风险监控的风险管理基本过程和体系结构。Fairley提出了风险管理的七个步骤:识别风险因素、评价风险概率和影响、研究策略来减轻被识别的风险、监控风险因素、启动连续性计划、管理危机事件和从危机中恢复;Klien和Luddin则参照质量管理(PDCA)四个过程提出了风险管理的四个步骤:风险识别、风险分析、风险控制和风险报告[[[]王炜. 项目风险管理三阶段研究[J].科技信息.1994-2012 China Academic Journal Electronic Publishing House. http://]][[[]赵树,王玉.项目的风险识别和防范[J].上海管理科学,2002.(5).]][[[]戴哲.项目的风险管理[J].企业管理,2002.(2).]]。
本文将风险管理的方法和步骤分为四步:风险识别、风险分析、风险评估和风险对策,将风险管理理论应用与梅丰水电站的运行管理中。
1.1风险识别
风险识别是风险管理的第一步,并且是重要的一步,风险因子识别的正确与否直接影响着风险评估、分析的结果,进一步影响着规避风险的控制措施。如果所识别的风险因子能够真实反映项目的潜在风险,则通过风险管理评估、分析后,可以采取有效措施,大大减少风险;相反,若错将不会构成风险的因子作为风险因子,不但不能降低风险,甚至造成更大损失。
根据风险因子的主客观因素,可以将梅丰水电站运行管理中的主要风险因子分为两类:一类是强降水、洪峰、山洪灾害、地质灾害、地震等客观因子,这类因子一般具有不确定性,其发生时间、危害程度、危害范围等都具有不确定性;另一类则风险因子则受人类主观因素的影响,如水库运行管理调度规程、闸门启闭规则等。风险管理主要是对这些因素进行评估、分析,有针对性地采取控制措施,以降低灾害发生的概率,最大限度的降低灾害的损失程度。
1.2风险分析
风险因子识别出来之后,就要对其进行风险分析,以便确定风险发生的可能性大小和所造成的影响程度,进而确定关键风险[[[]孙祖斌、秦士美.项目风险管理探讨[J].煤矿现代化,2009.01:96-97.]],为确定风险评估指标体系提供依据。
根据风险破坏的性质可以将风险分析分为定性分析和定量分析,定性风险分析主要是确定风险发生的可能性和其后果的严重性;定量风险分析则是对每一风险的概率及其所造成的后果进行量化[4]。
1.3风险评估
风险评估则是在风险分析的基础上,对关键风险发生的可能性及其所造成的后果进行预测,从而确定风险的级别,为制定风险对策提供依据。风险评估的方法有多种,如层次分析法(AHP)、专家评估法、主成分分析法、敏感性分析法等。
风险评估的结果将直接影响到风险对策,能够反映真实情况的结果能够有效的规避或减少风险损失。因此,在条件允许的情况下,应采取多种方法对风险进行评估,多种方法形成对比,有利于深刻认识潜在风险因子及其所造成的损失。
1.险对策
风险管理理论的最后一步为风险对策,即根据风险评估的结果,为消除或减少风险造成的不良后果而制定的风险应对措施[[[] 杨明. 浅议项目风险管理的应对措施[J].现代经济信息,2010.04:46.]]。主要有以下几种[4][5]:
(1)风险回避。风险回避是彻底规避风险的一种方法,这种方法通常是在风险未出现时,从根本上断绝风险来源。对于水电站运行管理,这种对策主要针对一些人为因素导致的风险源,如泄洪时由于人为因素导致闸门不能正常开启。
(2)风险控制。风险控制主要是针对一些可控性的风险因子,在风险发生前采取可行措施防止风险发生,或在发生过程中及时采取有效措施,以便减少风险所造成的损失。
(3)风险转移。风险转移是一种通过试图将自己可能面临的风险转移给他人承担来避免风险损失的方法。这种方法多应用于私营企业或个体经营者。对于水电站运行管理,很多是国有企业或事业单位,风险转移的策略一般很少使用,但有时管理单位负责人为了减少自己的责任,也通过投保措施将风险转移给保险公司。
(4)风险自担。顾名思义,风险自担意味着自己全部承受风险所带来的损失。当风险发生的概率较低,或者所造成的后果较低时,通常所有这种措施。当规避风险的费用大于风险自担的损失时,通常也主动接受风险。
2 实例
2.1 梅丰水电站工程概况
梅丰水电站位于八乡河上,是八乡河水利水电梯级开发项目。八乡河位于广东省丰顺县境内,发源于丰顺县的楼子嶂,是榕江南河支流五经富河的上游河段,自西向东流经上、下八乡、五经富等地。沿河先后有荷岭水、打银河水、大竹水、小溪水和青潭水等支流注入。五经富水流域面积719km2,河长76km,平均比降5.46%,在丰顺县境内面积为293km2,地理位置为东经115°50′~116°05′,北纬23°37′~23°49′之间[[[]广东省水利水电科学研究院.广东省丰顺县梅丰水电站A厂工程设计复核和安全鉴定报告[R].广州:广东省水利水电科学研究院,2006.]][[[]广东省水利水电科学研究院.广东省丰顺县梅丰水电站B厂工程设计复核和安全鉴定报告[R].广州:广东省水利水电科学研究院,2006.
第一作者简介:梁志山(1972—),男,广东梅县人,水工工程师,总经理,主要从事电站建设与管理工作。]]。
2.2 梅丰水电站风险管理分析
本文以专家调查法为例,运行风险管理理论对梅丰水电站运行管理过程中的风险因子进行评估。
(1)风险评估指标。梅丰水电站的主要功能有防洪、发电,因此在风险评估的指标应围绕防洪、发电进行识别。本次风险管理分析以大坝自身安全为目标,对有关主要影响因子作为风险评估指标,如表2-1所示。
(2)风险因子概率p。风险因子概率是指每个风险因子出现的程度,受风险因子及其外界环境的影响,一般需要咨询工程经验丰富的专家。为了说明风险管理分析这一方法,本实例采用假定的专家调查值,如表2-1所示。
(3)风险因子影响程度l。不同的风险因子对风险损失的影响程度是不同,影响程度大的因子一旦出现将会造成巨大损失。
(4)风险值R。风险值为风险因子概率与风险因子影响程度两者综合作用的结果,为了计算简单,本例直接取两者的成绩,即风险值。
表2-1梅丰水电站风险管理分析
(注:本表中的数据并未实际调查,而是采用的假定值。每一宗水电站都有其自身特点,在实际操作过程中,应组织有经验的一批专家赴现场调研,根据他们的调查值综合确定风险因子的出现概率和影响程度。)
由表2-1可知,启闭机失灵对大坝自身安全的风险值最大,白蚁灾害次之,地震灾害的风险值最小。因此,在水电站的日常运行管理过程中,应针对风险值的风险因子采取风险对策,以减少风险损失。
3 结语
水电站运行管理是一个系统工程,影响水电站综合效益的因素很多,既有无法抗拒的客观因素(地震、特大洪水等),也有人为的主观因素,如何对这些风险因子进行分析、评估,并提出相应的减少损失的措施,是水电站风险管理的关键。本文以广东省梅丰水电站运行管理过程中的影响大坝自身安全的风险因子为例,对其进行分析、评估。
(1)本文将风险管理理念运用到梅丰水电站的运行管理中,在假定情形下,对其进行风险评估,得出评估结论。
(2)限于实验条件,在评估过程中,没有严格按照评估程序,组织有关专家去现场调研,本文仅说明风险评估理论的步骤及程序,其结果不具有权威性。
(3)本文将风险管理理念运用到水电站的运行管理中,为其他水电站的运行管理提供借鉴。
(4)由于风险因子概率与风险因子程度直接影响到风险值,因此,如何根据风险因子概率和风险因子程度综合确定风险值,是今后研究的重点。
参考文献
[1]王炜. 项目风险管理三阶段研究[J].科技信息.1994-2012 China Academic Journal Electronic Publishing House. http://
[2]赵树,王玉.项目的风险识别和防范[J].上海管理科学,2002.(5).
[3]戴哲.项目的风险管理[J].企业管理,2002.(2).
[4]孙祖斌、秦士美.项目风险管理探讨[J].煤矿现代化,2009.01:96-97.
[5] 杨明. 浅议项目风险管理的应对措施[J].现代经济信息,2010.04:46.
[6]广东省水利水电科学研究院.广东省丰顺县梅丰水电站A厂工程设计复核和安全鉴定报告[R].广州:广东省水利水电科学研究院,2006.
研究背景
为什么要开展这一项目的研究?钟茂华介绍:“随着城市数量和规模的快速增长,我国城市正逐步承载越来越大的人口、安全、资源、环境等压力,城市公共安全面临严峻挑战。由于我国城市运行管理环境十分复杂,常规和非常规风险不断突出,城市安全隐患日益凸显、维护公共安全任务日益繁重。”
2016年科技部了《关于国家重点研发计划深海关键技术与装备等重点专项2016年度项目申报指南的通知》(国科发资〔2016〕52号),“其中‘城镇安全风险评估与应急保障技术’项目作为公共安全领域的重点研发项目首批启动,充分体现了国家对城市公共安全和应急保障工作的高度重视,是强化科技支撑、实现科技兴安的重要举措。”钟茂华说。
研究内容
城镇安全风险评估与应急保障技术项目面向城镇公共安全重大需求,旨在突破城镇安全综合风险评估、重大基础设施风险管控、应急保障等方面的理论、方法、技术、装备和标准,形成城镇、城市、城市群安全监测和应急保障平台。
问题导向
项目研究内容贯穿风险应对全过程。从风险评估、风险管控、应急保障三个关键环节,重点解决城镇公共安全共性关键技术和重要基础设施风险管控技术。在共性关键技术层面研究城市群综合风险评估、网格化安全监测、人员安全转移安置、应急资源保障等方面的技术、平台和标准;在重要基础设施风险管控技术层面研究困扰我国城市化快速发展过程中最突出的城市轨道交通安全运营、城市地下空间、大型活动场所、低影响排水等方面的技术、装备和标准。
研究方向
项目共设置9个课题,分别是:
城市群公共安全综合风险评估技术;
城镇大型活动场所安全风险诊断技术与信息平台研发;
城市多部门协同的网格化安全监测和保障技术装备及集成信息平台;
城市地下空间关键设施设备故障诊断技术及信息管理平台;
城市轨道交通防灾系统检测与风险管控技术;
城市轨道交通网络化运营重大风险管控与应急救援技术;
城市低影响排水(雨水)系统与河湖联控防洪抗涝安全保障关键技术;
城镇重大突发事件下人员转移安置应急保障技术及平台;
城镇应急资源配送与交通组织安全保障关键技术及平台。
研究团队
项目研究分别由清华大学、中国科学技术大学、中南大学、武汉理工大学等11所大专院校,中国城市规划设计研究院、中国安全生产科学研究院、北京城市系统工程研究中心、住房和城乡建设部城乡规划中心、中国标准化研究院等9家科研院所,以及广州地铁集团有限公司、深圳市地铁集团有限公司、北京市轨道交通设计研究院有限公司等10家企业共30家单位组成。项目团队拥有深厚的研究基础、优秀的人才队伍和良好的研发条件。参与单位均来自国内城镇安全领域具有较强优势的科研院校(所)及规划、设计、建设、运营单位,在学科专业和研究条件上优势互补,实现“产、学、研、用”结合。
空间尺度
由点(大型活动场所、地下空间),线(城市轨道交通),网(网格化城区、城市排水系统),面(城市群)多层次开展研究。
项目挑战
2014年,国务院《关于深化中央财政科技计划(专项、基金等)管理改革的方案》(以下简称《改革方案》)。在科技部对《改革方案》的政策解读中提到,改革的总体目标是,强化顶层设计,打破条块分割,加强部门功能性分工,建立具有中国特色的目标明确和绩效导向的科技计划(专项、基金等)管理体制。
在转变政府科技管理职能的原则下,政府各部门不再直接管理具体项目,建立统一的宏观管理和监督评估机制,破除条块分割,解决科技资源配置“碎片化”现象。“这意味着,与往年不同的是,这一国家重点研发计划项目将改变以往的各课题负责单位分e与政府科技管理部门对接,而是将具备条件的科技计划(专项、基金等)进行优化整合,由项目牵头单位负责对整个项目的总体协调和把控、统一接受监督评估。清华大学作为该项目总体负责单位,将承担这一职责,这一挑战将是前所未有的。我们也将努力在总体项目管理方面进行探索。”钟茂华解释说。
预期目标
项目预期将在以下几个方面产生积极效益:
一是形成城市群跨区域多因素综合风险评估理论、大型活动典型事故风险快速评价方法、低影响排水监测与评价理论体系、城市人员转移安置、应急资源规划调度等科学理论、方法。
二是建立大型活动场所风险智能化采集与识别技术,城市轨道交通防灾安全监测预警技术、防灾系统风险评估和管控技术,临近和穿越施工时地铁既有线安全监测预警技术,城市轨道交通运营关键装备在线监测与故障诊断技术,城市地下交通隧道关键装备在线故障诊断和结构病害处置技术,城市地下人员密集空间关键设施故障诊断与风险评估技术,城镇重大突发事件下人群疏散转移分析和人员伤亡评估技术等关键技术。
三是研发形成大型活动场所信息管理平台,城市地下空间关键设施设备故障诊断技术与信息管理平台,城市轨道交通网络化运营应急救援平台,城市轨道交通防灾安全现场综合检测装备,排水防涝安全监控系统平台,城镇人员转移安置、应急资源配送与交通组织等平台,城镇群多因素综合风险评估和跨区域应急联动及协同救援保障系统,低影响排水与河湖联控防洪排涝决策支持系统,城市多场景安全协同处置保障智能终端设备等平台、系统和装备。
关键词 内涝风险 快速评估水动力模型
中图分类号:G449.7文献标识码: A
城镇化的高强度开发建设,导致城镇不透水面积成倍增加,而河塘沟渠等调蓄水体则急剧减少,在城市面貌日新月异的同时,也积累了巨大的内涝风险。近年来国内多座城市出现严重的内涝灾害,造成重大经济损失和人员伤亡,引起社会普遍关注和强烈反响。
开展城市内涝风险评估,是加强排水防涝体系建设、防范内涝灾害的重要基础工作。内涝风险评估通常采用计算机仿真模拟的方法,模拟演算特定暴雨强度下的地面积水深度,积水深度越大则内涝风险越高。常规的计算机模拟方法计算精度高,但是需要输入大量的基础数据,包括排水管渠、排涝水系的拓扑结构和几何尺寸,泵站的流量及启排水位等,工作量大,耗时费力[1]。本文基于水量平衡的原理,深入分析了降雨径流量、水体调蓄容积、泵站排水能力、地面积水深度等主要因素的相互关系,提出一种内涝风险的快速评估方法,可以在短时间内得出评估成果,且具有相当高的精确性。
1 基本原理
城市排水防涝体系主要由排水管网、排涝水系及排涝泵站构成,降雨径流经排水管网收集输送,排入水系,再经泵站排放。假定排水管网和排涝水系完全均匀分布于排水区内,且具有足够的排水能力。降雨初期,降雨径流在水系内蓄积,不会形成地面积水。当降雨强度超过泵站排水能力并且将水系的有效调蓄容积充满之后,才会形成地面积水。即排水区内地面积水深度仅取决于降雨径流量、泵站规模以及水系的调蓄容积。降雨径流量由防涝标准和长历时降雨雨型确定;调蓄容积为水面面积和调蓄水深的乘积,通常调蓄水深取0.5m,则调蓄容积可以折算为水面率。基于水量平衡的原理,可以确定地面积水深度、泵站规模、水面率、降雨径流量的相互关系。
以芜湖市桂花桥排水区为例,该区面积11.45km2,现状水面率9.27%,现有一座排涝泵站――桂花桥泵站,按照20年一遇的防涝标准建设,泵站排水能力为40m3/s。
采用水利部门的净雨时程分配办法,重现期取20年,建立时间步长为1h、降雨历时为24h的降雨雨型,如图1所示。需要说明的是,该雨型为扣除入渗损失的净雨雨型。
图 1长历时降雨雨型(净雨)
根据前述的假定条件,泵站排水能力为40m3/s,按照排水区面积折算为每小时可以排除的降雨径流量,即40×3600 /11.45/1000=12.58mm/h。
根据排水区的现状水面率,调蓄水深按0.5m计,将水系的调蓄容积折算为可以调蓄的径流量(单位为mm,以HT表示),即HT=9.27%×0.5×1000=46.35mm。
将降雨雨型进行如下修正:比较累计降雨径流量与HT的差值,找出累计降雨径流量恰好超过HT的时点,将此时点之前的各时段的降雨径流量调整为0。降雨雨型的修正如表1所示。
表1 降雨雨型修正
修正后的累计降雨径流量,超过泵站排水量的差值,即为地面平均积水深度。可以得出,在11时地面平均积水深度达到最大值50.9mm。降雨径流量、调蓄容积、泵站排水量以及地面平均积水深度之间的关系可以通过图2表示。
图2桂花桥排水区水量平衡关系
2 利用二维水动力模型模拟地面漫流
以上水量平衡计算得出的地面平均积水深度,只有在排水区的地面完全平坦的理想条件下才会出现。即使在总体地形较为平坦的平原城市,地面起伏也是普遍存在。降雨径流总是向低洼地带汇集,因此低洼地带的地面积水深度远大于平均积水深度。为了体现地形对于地面积水深度的影响,可以采用二维水动力模型来模拟地面漫流过程。
仍以桂花桥排水区为例,采用丹麦水利研究所(DHI)开发的MIKE 21模型软件,模拟过程如下:
将桂花桥排水区的数字高程模型(DEM)导入MIKE 21;在模拟文件中,设置降雨强度为表1中修正后的降雨雨型;为了简化模型,将泵站排水能力概化为固定的蒸发强度,表达降雨径流从排水区排除,如前所述,设置蒸发强度为12.58mm/h。经过上述设置,即可进行动态模拟,得到地面积水深度随降雨历时的变化情况。图3、图4为模拟得到的不同时间节点的地面积水深度情况。
图3 第12小时地面积水深度情况
图4 第23小时地面积水深度情况
3 内涝风险评估
目前国内尚未形成统一的内涝风险评估标准。一般认为路面积水深度在0.15m以下,积水不会淹没道路侧石,不影响行人和机动车辆通行,而且积水只是沿路面汇积,不会造成周边建筑物浸水,不至于形成内涝灾害。当积水深度超过0.15m时,会造成一定程度的灾害损失,主要表现在交通受阻、建筑物浸水、财产损失甚至人员伤亡。灾害严重程度与积水深度和积水时间有关。
参考天津等地的内涝风险等级划分标准[2] [3],初步拟定芜湖市内涝风险等级标准,详见表2。
表 2内涝风险等级
根据MIKE 21模拟结果,利用MIKE软件中的统计分析工具,可以得到桂花桥排水区的内涝风险区划图及内涝风险评估统计表,如图5及表3所示。
图5 桂花桥排水区内涝风险区划图
表 3桂花桥排水区内涝风险评估统计表
将风险评估结果与近年来内涝实地调查统计资料进行对照分析,风险评估所反映的高风险区与实际内涝情况较为接近,说明上述内涝风险快速评估方法具有相当高的精确性。
4 结语
(1)本文提出的内涝风险快速评估方法,对于排水管网、排涝水系等繁琐细节进行简化处理,着重于降雨径流量、水体调蓄容积、泵站排水能力、地面积水深度等主要因素的研究分析,并采用二维水动力模型进行模拟评估,具有高效便捷且精度较高的优点。
(2)快速评估方法可以用于内涝风险的初步评估,掌握内涝高风险区的分布情况。高风险区所占比例虽小,却是城市排水防涝的重点区域。针对初步评估得到的高风险区,再进行精细化的计算机模型分析,能够取得事半功倍的效果。
(3)常规的评估方法需要调查收集大量的基础资料。快速评估方法所需的基础资料为:排水区的地形资料、当地降雨资料、排水区面积及水面率、排涝泵站规模,这些资料较易取得,便于开展评估工作。在缺乏排水管网和排涝水系的基础资料的情况下,采用快速评估方法可以得到较为满意的评估结果。
参考文献
[1] 张冬冬,严登华,王义成,等. 城市内涝灾害风险评估及综合应对研究进展. 灾害学,2014,29(1):144~149
[2] 解以扬,韩素芹,由立宏,等. 天津市暴雨内涝灾害风险分析. 气象科学,2004,24(3):342~349
我国已开展的洪水风险研究基本上是区域性的,内容涉及四个方面:洪水风险辨识、洪水风险评估、洪水风险评价、防洪决策风险的评价。分析决策过程中的各种不确定因素,不同决策方案可能产生的不同后果,争取将决策失误造成的损失减小到最低程度。
我国洪水风险研究的一个重要特点是较早将大范围的洪水数值模拟技术应用于洪水风险分析。1988年10月27日,国务院批转了水利部《关于蓄滞洪区安全与建设指导纲要》,明确要求各流域机构“编制本流域典型年蓄滞洪区运用顺序及淹没图”,“在实行洪水保险的地区,由有关流域机构在水利部的指导下绘制典型年洪水淹没风险边界图”,“并在保险公司的配合下编制典型年洪水淹没风险边界图及洪水保险费率图”,对风险图的绘制工作起到了推动作用。20世纪90年代,我国一些省、市陆续将洪水风险图用于防汛指挥工作。
1997年初,国家防办发出1号文件,正式要求全国组织绘制洪水风险图。随后又以补充文件的形式,明确提出我国洪水风险图的绘制将分三步走。第一步是根据历史洪水的资料与已有研究成果,勾画洪水影响范围,并以表的形式说明受淹范围中人口、资产的分布情况;第二步是根据具体对象的特点,采用分析计算的方法,确定区域洪水风险的分布特性,为制定防洪规划与防汛预案服务;第三步是与实时雨情、水情、工情的监测预报系统相结合,进一步为防汛调度指挥与灾情评估等业务服务。
1998年初,国家防办选择广东省北江大堤保护范围(含广州市)与荆江分洪区作为洪水风险图绘制第二步工作的试点。中国水科院灾害与环境研究中心具体承担了试点研究任务。在广东省防办、北江大堤管理局与湖北省防办、荆江分洪区管理局等有关单位的大力支持下,采用洪水仿真、数据库与GIS等先进技术,建立了便于对地理、社经、工情、水情、灾情等大量信息进行计算机管理的洪水风险计算、风险图绘制与信息演示系统。