当前位置: 首页 精选范文 医学影像技术的应用范文

医学影像技术的应用精选(五篇)

发布时间:2023-10-09 15:04:28

序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇医学影像技术的应用,期待它们能激发您的灵感。

医学影像技术的应用

篇1

应用数字化虚拟肝技术,可在术前明确肝静脉、门静脉和肿瘤血管的分布以及相互关系,有利于减少术中切肝时的出血量。此外,运用数字化虚拟肝系统可进行反复术前模拟仿真,显示各种预切除方案的肝断面及残肝体积、需切除或保留的肝内管道,从而选择既能完整切除肿瘤又能保留足够残肝体积的最优手术切除方案,最大程度减少术后并发症的发生,准确预测术后发生肝功能衰竭的可能性,提高手术的成功率。

2数字化虚拟肝对门静脉栓塞术的指导价值

在肝脏移植尚不能普及的今天,手术切除是目前治疗肝癌的最有效方法。但是术后残肝体积(fu-tureliverremnant,FLR)过少则是造成术后肝功能衰竭等并发症的重要因素,限制了肝癌手术的进行。对于预切除肝体积和预留肝体积等,国外有免费软件和可供教学的网站,数字化虚拟肝有助于在三维空间上对门静脉进行直观、准确地划分,准确测定肝体积有助于门静脉栓塞术后肝切除时机的选择,从而最大限度地减少术后肝功能衰竭的发生,更加有利于术后患者的恢复,体现了数字化虚拟肝技术对门静脉栓塞术的指导价值。虚拟手术具有可交互操作、可预测、可重复等优点,且在手术之前可预先模拟其手术过程,预测在真实手术过程中可能出现的复杂及险要情况。该系统有助于完整地保留残肝、血管及重要结构的完整性,最大程度地减少术后并发症的发生率,提高手术成功率。该系统通过测定拟切除肝脏的体积、残余肝脏的体积、功能性肝脏的体积,完整地保留残肝、血管及其重要结构,最大程度地减少术后并发症的发生率,预测术后发生肝功能衰竭的风险性,从而提高肝脏手术的成功率。

精准肝脏虚拟手术主要依靠三维影像技术及虚拟手术系统。三维图像可视化重建技术又被称为非损伤性立体解剖,其利用计算机图像处理技术对二维切面图像进行分析和处理实现了对人体器官、软组织和病变组织的分割提取、三维重建和三维图像的显示,不需对二维图像进行综合想象,对肝脏、管道系统的分支走形及病灶的空间位置信息的显示更加直观、准确。可辅助外科医生对病变区域进行分析,为手术方案设计提供了准确的个体化信息,大大提高了诊断的准确性和可靠性,比二维断层图像的临床应用价值更高。三维可视化重建基础上的虚拟手术技术是肝脏外科手术有效的辅助工具之一,这对制定合理的手术预案具有重要的临床价值。

2004年起我们进行中国女性一号数字化虚拟肝脏三维重建及虚拟手术研究并得到了令人满意的结果,为今后数字化虚拟肝脏及虚拟各种肝脏手术的研究做了积极探索。这些方法主要是利用CT进行三维重建,先进的螺旋CT带有三维软件和重建功能,对收集的二维图像通过计算机处理重建出三维图像,对疾病的诊断和手术方案的制订具有一定的指导作用。三维图像可供外科医生对肝脏进行多方位、多角度的观察,有利于肝脏正确分段、肝内病变术前定位和肝内血管变异情况的观察,降低手术的风险。文献报道应用三维肿瘤治疗系统同样是提高放疗的精确定位和安全性的方法,说明三维影像技术具有精确定位和精确引导的作用。三维超声具有更加准确、直观的特点,尤其是三维断层超声模式可根据实际需要任意调整最小层间距,更加有利于分层及准确定位,对于肝脏的病变有更加准确的定位。三维超声能提供许多二维超声不能提供的信息。可根据肝脏肿瘤内部血管的走形及空间位置关系进行准确的定位,从不同角度观察手术区域,同时能从二维超声不易得到的冠状切面进行观察,提高了手术的精确性。

超声造影可以作为评估肝癌治疗疗效的可靠方法,可评估虚拟各种肝脏手术的效果。医生可借助术前进行超声影像技术的检查,制定最佳手术路径、切除肝段的大小、阻断肝内管道的预案,达到减小手术损伤、预测治疗效果的目的。由于CT价格昂贵且对人体产生辐射,虽然现在的防辐射技术有所提高,但是仍不适宜为外科医生常用的手术方法。相比较之下,三维超声具有无辐射的特点,可以反复操作,且其对血流具有较高的敏感性,更加有利于定位时趋避血管。在肝脏虚拟手术应用中,是一种具有广泛发展前景的方法。

3开展医学影像技术在肝脏虚拟手术的展望

篇2

河南省舞钢市计划生育服务站河南省舞钢市462599

【摘 要】目的:探讨放射医学影像无片化技术的应用;方法:通过DICOM格式将放射医学影像数字化治疗传输到各个临床科室的电脑中,临床医生利用DICOM阅图软件在电脑中来进行诊断和图像后处理;结果:通过移动存储介质和局域网来对影像资料进行传输,能保证资料完整无损,通过DICOM阅图软件来对图像进行后处理,能让图像清晰显示、信息真实以及内容丰富,让图像质量提高。结论:在临床中应用放射医学影像无片化技术可以让医生的阅片需求得到有效解决,同时能对图像进行后处理,对图像进行多角度和多方位的观察,图像资料更加完整,减少浪费,让成本有效降低,让临床诊断的准确率得到有效提升,应该进行临床应用和推广。

关键词 放射医学影像;无片化技术;应用在科学技术和医疗卫生事业不断发展和完善的过程中,数字化技术在医学影像学中的应用也越来越广泛。随着放射医学数字化影像设备的广泛应用,临床各个科室中的图像显示、存储和传递也实现了数字化,真正实现了无片化。但是因为受到网络通信技术图像传输和数据存储的影响,现阶段大部分医院并没有实现图像传输的网络化和无片化,胶片依然是临床观看图像的主要方式,导致数字化影像设备的作用不能有效发挥;另外因为医疗检查费用的下降,胶片基本上不会另外收费,从而引起胶片滥打的情况,造成医疗成本的增加,对医疗活动的正常运转造成一定的影响[1]。本研究主要对放射医学影像无片化技术在临床中的应用进行了分析,现报告如下。

1材料与方法

1.1材料

材料主要包括数字化影像设备、移动存储介质(光碟刻录机或者U盘)、院内局域网络系统或者电脑;DICOM专用阅图软件(PS软件)。

1.2方法

通过DICOM格式将放射医学影像数字化治疗传输到各个临床科室的电脑中,临床医生利用DICOM阅图软件在电脑中来进行诊断和图像后处理。具体的传输方式如下:如果医院以建有局域网,同时各个临床科室中的电脑和局域网连接,在这种情况下就可以在一台性能较好的电脑中存储放射科数字影像资料,将院内局域网和该电脑连接,该电脑要保证常常开机的状态,将其他电脑的权限设置为只读,这样局域网中的各台电脑就能对影像资料进行调阅,同时可以采用PH软件在显示终端对图像进行后处理,从而来保证临床阅图的实际需求。如果医院没有连接局域网或者部分没有连接局域网的电脑,就可以利用移动存储介质来进行传输。

2结果

通过移动存储介质和局域网来对影像资料进行传输,能保证资料完整无损,通过DICOM阅图软件来对图像进行后处理,例如调节窗位、窗宽、缩小或者放大、多幅拼图以及图像对比度的反转等,能让图像清晰显示、信息真实以及内容丰富,让图像质量提高。

3讨论

在医疗卫生事业不断发展和进步的过程中,传统的X射线摄像技术对于现代临床治疗和诊断的实际需求已不能有效满足,传统X射线摄像技术的主要方式是利用胶片进行存储、显示以及传递。而作为现代放射医学影像的发展,必将以全数字化放射学、远程放射医学和全数字化图像引导为主。放射医学影像技术的数字化,可以让医学图像的采集、存储、传递方式得到有效改善,逐渐或者完全实现胶片的取代,为放射医学影像无片化技术的实现打下良好的技术。

随着社会的不断发展,临床医生的专业技术水平越来越高,同时人们对健康的要求也在不断提升,临床医生对于亲自阅片的愿望也更加强烈,胶片的数量不断增加,胶片支出成为了医院支出成本中非常重要的组成部分,但是很多胶片在医生看一眼之后就丢弃,从而就造成了比较严重的浪费情况[2]。在临床中应用放射医学影像无片化技术,投资小,而且能够反复利用,不会造成不必要的浪费;另外传统胶片的自身容量有限,对于多种窗、多图像和多部位的技术需求不能有效满足,容易出现漏诊的情况,而移动存储介质则能够存储很多的图像,从而有效满足容量的实际需求;传统胶片不能对图像进行后处理,放射科工作人员的工作水平会直接影响图片的质量,导致图像的对比度、清晰度和黑白度不能有效满足临床诊断的实际需求,从而出现漏诊和误诊的情况,而放射医学影像无片化技术则可以利用PS软件来对图像进行后处理,医生可以根据需要来调节图像的各个区域,让图像更加清楚,让图像能适合医生的个人阅图习惯,从而让临床诊断率提高[3]。

总之,在临床中应用放射医学影像无片化技术可以让医生的阅片需求得到有效解决,同时能对图像进行后处理,对图像进行多角度和多方位的观察,图像资料更加完整,减少浪费,让成本有效降低,让临床诊断的准确率得到有效提升,应该进行临床应用和推广。

参考文献

[1]吴建军.对平板型数字化的放射医学影像技术研究[J].影像技术,2012,05:34-35.

篇3

【关键词】 医学影像技术;临床应用;发展趋势

文章编号:1004-7484(2013)-10-6069-02

随着医学影像技术的不断发展,CT、DR、MRI等多种医学影像技术在医学领域和临床应用中取得了创新和突破。借助各种医学影像技术的应用,医护人员对解剖结构的成像更为详细,对病变组织的形态了解更为清晰。本单位拥有的影像技术设备是西门子1.5tMRI、西门子胃肠机、ge单排CT、意大利GMm-DR、飞利浦DR以及飞利浦64CT。本文主要就利用MRI技术对小儿脑部磁共振的影像分析和临床应用,探讨和分析医学影像技术的应用及发展趋势。

1 医学影像技术的临床应用

1.1 医学影像MRI技术简析 医学影像技术中的MRI图像,也可称为磁共振或者核磁共振成像,此项技术借助电子计算机和图像重建的功能重新建立成像的医学影像技术,表现于灰度呈现度不同,反映相对应的组织结构情况的数字化影像技术。MRI对小儿脑部的分辨率较高。MRI的检查范围比较广,非常适合中枢神经系统、头颈部位以及心脏血管等检查,但是对于体内有磁性物质的病人则失去检查功能,而且MRI没有CT适合对钙化的效果检查,对肺部和骨皮质的现实也比CT的检查效果差[1]。

1.2 MRI技术在小儿脑部磁共振的影像分析 本单位拥有西门子1.5tMRI,此设备拥有独特的西门子Tim线圈,可以同时对全身各脏器功能进行扫描、灌注扫描以及成像。西门子1.5tMRI的软组织分辨率较高,无放射线,因而对人体的身体基本无害。扫描过程中,检查对象平躺在检查床上以得到轴位、冠状位、矢状位以及斜位的体层图像,还可以做无创性全身血管成像、闹弥散、灌注等功能成像,西门子1.5tMRI具备高分辨率胰胆管水成像、输尿管水成像等优秀的影像学检查功能,为检查者提早发现病变情况。

回顾近期本单位小儿头部磁共振检查共80例,平均年龄1.5岁,在小儿服用镇静药物熟睡之后进行扫描。将小儿头部放于线圈中心,用海绵垫固定,按照定位图调整扫描的范围。结果发现,80例患儿都获得了比较满意的图像,一次镇静完成检查的患儿58例,服用镇静药物后未能及时扫描导致检查中惊醒,需二次镇静才能获得所需图像的患儿22例。颅内出血患儿33例,脑软化42例,其余为颅内其他疾病和正常磁共振影像。患儿在做磁共振检查前需使用镇静药物,否则运动伪影会影响图像的质量,甚至导致无法获取检查诊断。在扫描过程中应用双梯度中的zoom选项,以提高细微病变的检出率,尤其在小出血点的检测上结果准确。磁敏感加权序列具有高分辨力、薄层重建和流动补偿的优点,有效降低了小动脉和噪声对检查的影响,比较适用小儿脑部血管病变的检查,尤其是小儿细小血管早起出血的诊断精确,并能判断小儿脑组织可存活性几率。而弥散加权序列则可产生两套的图像,其中一套b值是1000的弥散加权图像,另外一套是b值为0的T2加权图像,能减轻颅底磁敏感的伪影,改善信噪比。

西门子1.5tMRI的影像技术具有强大的磁体,先进的相控阵线圈,开放式的设计,大型的磁体空间,成像快速、图像质量和精确度高。本单位西门子1.5tMRI的配置,不仅能更好的满足医疗、科研工作的需求,更带动了单位医疗技术水平再上一个新的台阶。

2 医学影像技术的发展趋势

20世纪下半叶,我国的医学影像技术取得了很快的发展,从单纯的放射诊断科室发展到如今的集诊断和治疗于一体的临床医学影像科室。伴随着计算机、信息科学以及微电子技术的不断发展,我国医学影像技术的发展前景将更为广阔。

在不断发展并日趋完善的先进医学影像的技术中,最初的计算机X线摄影透过人体放射于影像板上形成潜影,再将其放入激光扫描机上扫描,经过模数转换器,图像信号则生成图像。随后发展的CT利用X线对人体某一范围逐层扫描,获取信息,也是经由计算机处理得到重建的图像。此外,CT的图像显示器、多幅照相机等辅助设备,让探测器对X线有更为高度的敏感性,可将接收的X线转变成模拟信号,再变成数字信号,通过计算机处理器变成CT图像,再由多幅照相机摄片提供诊断。随后逐步发展的数字减影血管造影在记忆盘中储存造影、注射部位的透视影像转变的数字,减去蒙片数字,将剩余数字转变成图像,成了较为清晰的纯血管造影像,其技术比一般的血管特管造影更为简便、经济,更少引发合并症,但导管插管技术不断普及以后,静脉法数字减影逐渐被动脉法所替代了[2]。目前的核医学比较先进的显像方式是单光子发射计算机断层显像,将单光子注入人体内,放射性核素发出的射线借助计算机重建影像,这种发展是电子计算机断层和核医学示踪原理相互结合的高科技医疗技术,采集的信息量大,适应面广,特异性高,放射性小,技术的逐渐发展在当今的医学影像技术中有独特的诊断价值。分子影像的出现,为新的医学影像时代的到来带来了曙光。目前全球医学界都致力于研究开创分子影像和基因的治疗,其重要步骤是借助分子探针插入人体细胞内,MRI或者红外线记录信号,再显示分子、代谢和基因转变的图像,为医疗的诊断提供准确的基因表达。而PACS系统的产生是计算机和网络技术飞速发展下的产物,其标志着网络影像学和无胶片时代的来临,PACS系统储存、管理、传输、处理数据,完成在放射科和其他科室之间的影像传递,还通过互联网和微波技术实现远程诊断,这种技术的发展大大提高了当今医学影像技术影像资源的效率[3]。

3 结束语

现代的医学影像技术经过了日新月异的发展,各种的先进设备层出不穷,世界医学界接受了利用医学影像帮助诊断治疗方式并不断研究并创新更高技术的医学影像技术。相信在不久的未来,随着医学界的不断革新、科学医疗技术的不断发展,新技术的研究会为影像学技术的临床应用开启更新的篇章。

参考文献

[1] 袁聿德.医学影像检查技术[M].北京:人民卫生出版社,2010,14(09):16-17.

篇4

关键词:病人隐私;医学影像;图像加密;通信加密

中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2013)01-0195-03

现代医学与计算机技术、通信技术及多媒体技术逐步相结合,为患者提供了直接、准确、方便、快捷的医学诊断,大大提高了医学诊断准确率,为患者的进一步治疗提供了方便之门,减轻了患者的痛苦。但是,随着社会的发展,患者在享受医学影像给病情的诊断带来便利的同时,其个人隐私保护意识不断加强,并对对此不断提出要求;同时,院方也有责任保护患者的隐私不被泄露;因此相关的图像加密技术便亟需应用在医学影像图像中[1][2]。

1 医学图像加密类别

医学影像的加密初步可分为存储加密和传输加密两类。在存储过程中,为了图像的信息安全可以采用图像隐藏、图片加密等方式;经常采用混沌加密算法。而对于彩色图像则有一种称为单通道彩色图像加密算法。在图像传输过程中,可以采用图像通信加密技术等,通过在通信中的加密技术以便保证患者的隐私安全。

2 图像加密介绍

现阶段,图像加密采用的主要方法分为如下三种:

2.1 数字图像置乱技术

如今为了图像的存储及处理方便采用数字技术存储医学影像成为必然。数字图像置乱技术则是通过对数字图像中由图像像元组成的空间数据进行置换实现。这个置换类似经典密码学中的一维信号的置换。或是修改用来描述信号在频率方面特性时用到的一种坐标系中的数字图像的变换域中的参数。其目的都是使需要被保护的图像在置换后成为无法识别出的杂乱图像。用以达到需要进行隐私保护的图像内容的目标。研究人员提出了基于数学变化技巧的几新算法[3]即幻方变换、Arnold变换、Fass曲线、Gray代码、生命模型等。这些算法已被广泛的应用于数字图像所包含的信息内容的处理之中,并起到了行之有效有效地作用。数字图像的数字信息的安全的得到了有力的保护。

现如今出现了另外一种图像置乱的思想,即通过利用混沌序列来实现数字图像的置乱。这种技术也可应用在医学影像中,用以实现对病人个人医学影像的保护。基本思想是通过混沌系统运算出一个混沌序列,将这个序列按照事先选取的既定的算法或是排列方案进而进一步进行运算以生成新的一个序列。与此同时,为了保证原混沌序列的位置与计算后的新序列之间的变换位置是一一对应的,又进一步利用了混沌系统的遍历性。实验表明,这种通过由混沌系统得出的混沌序列的进而对其进一步运算得到的变化关系在应用到图像置乱后可以实现明显的图像置乱效果。同时为了改变加密图像的统计特性、图像像素值以及降低图像像素值间的相关性,也可以通过单个混沌序列或多个复合的混沌序列来实现改变。

2.2数字图像信息隐藏

数字图像信息隐藏技术也可用于保护病人医学影像的隐私。基本思想是,将需要被加密的医学图像的数字信息隐藏在另外一幅无关的图像中,比如一幅公开图像。这幅图像要求具有一定的迷惑性、大众性,以便迷惑攻击者,能够降低转移其注意力,这样就降低了图像被攻击的几率;与此同时,通过一定算法改变加密图像的原有的统计特性。以达到保护被加密影像的目的。应用其中的调配融合算法、“中国拼图”算法可以使图像的信息隐藏达到一个高质量的水平。另外,还可以综合各种不同的算法的特点,将数字隐藏技术扩展到声音、图像等不同的信息载体中的信息隐藏需求中去。

另外,近年来新兴的一种数字作品版权保护技术——数字图像水印技术[3],能够有效地保护作者以及出版商的合法权益不受侵犯,现已被广泛应用于印刷领域中,具有了广阔的使用价值和商用价值,成为多媒体及知识产权保护的有效手段之一。数字图像水印技术是信息隐藏技术研究领域的一个重要分支。为了显示创作者对其作品的所有权,这种隐藏技术将具有某种意义的数字水印利用数字嵌入方法将其隐藏在其作品(可以是多种信息载体,比如视频、图像、声音、文字等数字产品)中。在进行印刷品真伪验证时,可通过水印的检测、分析来保证数字信息的完整性及可靠性。

2.3数字图像分存

数字图像分存技术是把一幅需要进行保护的数字图像分割成多幅图像进行传输。被分割后的图像不再具有某种特殊的意义成为无意义或是看起来杂乱无章的图像。也可将分割后图像进一步隐藏到另外几幅不相关的或是具有一定迷惑作用的图像中进行存储获传输。这类似于数据组的分包传输。这样可以避免因个别图像的传输丢失而造成病人隐私信息遭到泄露的危险,而且也起到在通信中个别被分割后的图像信息的丢失与泄露不会影响原始图像信息的泄露。

数字图像分存技术的特点使窃密者窃取完整的原始图像的成本大大增加,而且也提高了病人图像隐私的保密程度

同时,若将图像置乱技术、图像隐藏技术、图像分存技术三者结合起来将使图像的安全传输有了较高的可靠性。

3 图像传输加密介绍

随着现代科技的不断进步,远程医疗技术也在日新月异的发展。对病人实行连续诊断,及时获取病情发展状况成为未来要实现的目标;同时,病人的隐私在图像传输过程中也增加了泄露和被攻击的风险,因此,在某种特定情况下对病人图像信息的传输需要进行加密保护。

篇5

关键词:信息技术; 医学影像技术; 应用

中图分类号:G436 文献标识码:B 文章编号:1006-3315(2016)01-192-001

在信息技术的推动下,现代医学影像技术日新月异,各种各样的新型技术及设备层出不穷,借助于医学影像技术辅助诊疗也成为医疗领域所广泛应用的方法。本文就信息技术在医学影像技术中应用的意义进行分析,并就信息技术在现代医学影像各技术中的应用进行探析。

一、信息技术在医学影像技术中的应用意义

医学影像技术不论在医学课程教学、实验教学、临床课程教学,还是医学科学研究、临床诊断治疗方面,均发挥着巨大的作用。

当前,不论医院、医学院校,还是医学研究机构均十分关注医学影像技术的信息化问题,这是由于传统医学影像在传输、存储、处理方面存在各种各样的弊端。如就医院而言,传统医学影像在影像胶片保存时所需耗费的存储空间极大,而且胶片处理过程需要耗费大量人力、财力与物力,病患所需等待的时间过长。胶片归档工作繁重,极易出错,手工进行胶片查询耗时耗力,时间久后,胶片极易老化,使得影像模糊,为再次查阅带来困难,甚至导致罕见影像受损。此外,难以实现远程会诊,需要人工送胶片,传输过程耗时耗力,且费用高。

而在医学类院校教学、科研工作中,传统医学影像技术也有种种弊端,包括如下:难以查找有用的影像,教学时需依赖医学影像,而教师为寻找同教学内容相符的影像,必须大量查阅资料、切片、标本,甚至需要到医院借阅,因而为其备课带来了极大的困扰。此外,很多罕见资料难以找到,即使找到也由于清晰度差不能使用。教师有时花费大量精力所找到的有用影像,由于影像载体不同而难以在课堂上展示,需要借助于各种各样的设备,费时费力,还难以完成教学任务,但是如果不用又无法用文字准确、清晰的表述,学生很难理解,导致教学效果不佳。

而信息技术的应用,有效地解决了传统医学影像所存在的各种问题,为医院影像管理、借助影像诊断病情、为病人提供便捷的就诊,为教师丰富教学活动,加深学生的理解,医学研究人员深入分析和研究疾病,提高影像使用率等方面,均带来了巨大而深刻的变革,极大地拓展了医学影像技术的应用空间,这正是信息技术在医学影像技术中应用的意义所在。

二、信息技术在医学影像技术中的具体应用

如今的医学影像早已脱离了之前依靠透视、拍片等加以诊断的情况,而是拥有CR、DR、MRI、DSA、CT等现代化医学影像技术,这项技术的诞生和发展均离不开信息技术的应用,如今现代医学影像技术已经成为了一门新兴专业,开始从人体解剖诊断逐步朝着分子、功能成像方面发展,而在此发展过程中仍有赖于信息技术的应用。

1.CR

该技术采用激光对成像信息加以读取和自动化记录,并以成像板作为基本载体,经曝光、信息读出后成功地形成了信息化平片影像,极大地提高了照片的分辨率与显示力。借助于信息技术,对图像进行处理,有助于进一步增加组织结构信息显示层次性,降低摄影辐射剂,减少对机体的损伤,还实现了将所获信息的高效传输,具有远程医学之功用。

2.DR

该技术借助于X线电视系统,借助于计算机信息化处理,将模拟信号经信息化采样、模/数转换等一系列过程,接入计算机中加以存储、分析、存储。所得图像具有很高的分辨率,所用放射剂量小,还可对图像进行处理,实现了无胶片自动化,借助于信息化工作站,能够同其他科室共享资源。

3.DSA

该技术是借助于计算机信息技术、影像增强、电视等技术发展而来,DSA图像能够对血管的径路图加以高清显示,加之应用了减影技术,极大地提高了对于血管的分辨力。

4.CT技术

该技术于上世纪70年代开始应用于临床,在信息技术的推动下,该技术已经经过了多次的升级与换代,无论是结构,还是性能均得到了提高和改善,并促进了其推广和普及。该技术对解剖结构显示清晰,能够对病变进行定位、定性诊断,因而在临床中具有广泛应用。

5.MRI

即磁共振成像技术,该技术在电子信息技术、图像重建技术的基础上形成,通过不同灰度,对组织结构进行反映,属于现代化医学影像技术中应用广泛的一种技术,且对于软组织具有很高的对比分辨率。

6.超声技术

超声成像原理同其它技术有所不同,但也能将组织、器官成像,因而也属于现代医学影像技术的一部分。该技术借助于各种超声设备,将超声发射之人体内,当其在体内传播时遇到不同组织、器官分界时,会出现回声,在借助于计算机信息技术,将此类回声信号加以采集、接收、加工、处理之后,就能够将其显示出来。

三、结语

综上所述,21世纪是信息技术高速发展和广泛应用的时代,现代医学影像技术借信息技术之东风,也必将得到快速的发展,不仅技术种类日趋丰富,而且检测效果日趋提高。通过深入地探析信息技术在医学影像技术中的应用,有助于加快提高医学放射技术水平,推动医疗水平的逐步提升。

基金项目:湖南省永州市科技计划指导项目(永科发[2013]17号)

参考文献: